" "
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Identify Genetic Mutation for Rare Cancer

Published: Thursday, January 17, 2013
Last Updated: Thursday, January 17, 2013
Bookmark and Share
Gene sequencing program gives researchers new leads to improve cancer treatment.

It started with a 44-year-old woman with solitary fibrous tumor, a rare cancer seen in only a few hundred people each year. By looking at the entire DNA from this one patient’s tumor, researchers have found a genetic anomaly that provides an important clue to improving how this cancer is diagnosed and treated.

Researchers at the University of Michigan Comprehensive Cancer Center sequenced the tumor’s genome through a new program called MI-ONCOSEQ, which is designed to identify genetic mutations in tumors that might be targeted with new therapies being tested in clinical trials.

The sequencing also allows researchers to find new mutations. In this case, an unusual occurrence of two genes – NAB2 and STAT6 – fusing together. This is the first time this gene fusion has been identified.

“In most cases, mutations are identified because we see them happening again and again. Here, we had only one case of this. We knew NAB2-STAT6 was important because integrated sequencing ruled out all the known cancer genes. That allowed us to focus on what had been changed,” says lead study author Dan R. Robinson, research fellow with the Michigan Center for Translational Pathology.

Once they found the aberration, the researchers looked at 51 other tumor samples from benign and cancerous solitary fibrous tumors, looking for the NAB2-STAT6 gene fusion. It showed up in every one of the samples. Results are published online in Nature Genetics.

“Genetic sequencing is extremely important with rare tumors,” says study co-author Scott Schuetze, M.D., associate professor of internal medicine at the U-M Medical School. “Models of rare cancers to study in the laboratory are either not available or very limited. The sequencing helps us to learn more about the disease that we can use to develop better treatments or to help diagnose the cancer in others.”

The NAB2-STAT6 fusion may prove to be a difficult target for therapies, but researchers believe they may be able to attack the growth signaling cycle that leads to this gene fusion.

“Understanding the changes induced in the cell by the NAB2-STAT6 gene fusion will help us to select novel drugs to study in patients with advanced solitary fibrous tumors. Currently this is a disease for which there are no good drug therapies available and patients are in great need of better treatments,” Schuetze says.

No treatments or clinical trials are currently available based on these findings. Additional testing in the lab is needed to assess the best way to target NAB2-STAT6. The gene fusion could also potentially be used to help identify solitary fibrous tumors in cases where diagnosis is challenging.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Silencing X Chromosomes
Work could lead to ways to counteract X-linked diseases in girls and women.
Tuesday, January 12, 2016
Precision Medicine for Penile Cancer
Defining the genomic landscape reveals similarities with other squamous cell cancers.
Thursday, December 17, 2015
X Chromosome Discovery Could Aid Research on Many Sex-Linked Disorders
U-M researchers find new way for RNA to regulate genetic activity.
Thursday, October 22, 2015
What Drives Advanced Prostate Cancer?
Large international study finds 90% have anomaly that could influence treatment.
Tuesday, May 26, 2015
New Device May Shed Light on Why Cancer Cells Metastasize
Scientists from the University of Michigan think they are now a step closer to understanding why some cancer cells metastasize.
Thursday, May 21, 2015
Thyroid Cancer Genome Analysis Finds Markers Of Aggressive Tumors
TCGA study reveals molecular underpinnings; could lead to more precisely targeted treatment recommendations.
Monday, October 27, 2014
Genetic Pathway for Chronic Kidney Disease Revealed
Findings from the study open the door to early treatment for millions at risk for CKD.
Monday, June 23, 2014
Study Finds Potential to Match Tumors with Known Cancer Drugs
Mapping the landscape of kinases could aid in new world of personalized cancer treatment.
Friday, February 08, 2013
Researchers Uncover Gene’s Role in Rheumatoid Arthritis
Discovery may extend to other autoimmune diseases.
Wednesday, January 30, 2013
Researchers Find Driver of Breast Cancer Stem Cell Metastasis
Researchers at the University of Michigan Comprehensive Cancer Center have found that a cancer gene linked to aggressive spread of the disease promotes breast cancer stem cells.
Tuesday, July 31, 2012
U-M Researchers Create Reprogrammed Stem Cells for Disease Studies
Researchers to study the origin and progression of various diseases and to search for new treatments by using iPS cells with human embryonic stem cells.
Wednesday, July 27, 2011
University of Michigan Study Shows SEQUENOM's MassARRAY Technology Identifies HPV Infections
New study uncovers significant proportion of potential false negatives in widely used HPV DNA test which could lead to cervical cancer.
Tuesday, July 21, 2009
Gene Therapy Appears Safe to Regenerate Gum Tissue
University of Michigan researchers have developed a method of gene delivery that appears safe for regenerating tooth-supporting gum tissue.
Friday, April 17, 2009
New Genes Present Drug Targets for Managing Cholesterol and Glucose Levels
According to University of Michigan researcher, all the genes are potential new drug targets and some of them could help explain conditions that have been a mystery.
Tuesday, December 09, 2008
U-M Researchers Analyze 678 Genetic Markers in 29 Native Populations of Americas
Gene study adds weight to theory that native people of the Americas arrived in a single main migration across the Bering Strait.
Thursday, November 29, 2007
Scientific News
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
The Spice of Life
Scientists discover important genetic source of human diversity.
Removing Race from Human Genetic Research
A group of scientists are urging their colleagues to take a step forward and stop using racial categories when researching and studying human genetics.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Genetic Cause of Rare Allergy
Institute has identified a genetic mutation responsible for a rare form of inherited hives induced by vibratory urticaria.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!