Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Genes, Junk Food and Weight

Published: Wednesday, January 30, 2013
Last Updated: Wednesday, January 30, 2013
Bookmark and Share
Recent evidence suggests that gut microbes play a role in obesity.

Researchers gained new insight into how genetics may influence obesity by studying how the mouse equivalent of a fast-food diet affects different mouse strains.

The findings may help explain why some people gain weight more easily than others.

Excess weight can raise users risk for type 2 and gestational diabetes, heart disease, cancer and other health problems. But maintaining weight is difficult for many people.

Body weight reflects the balance between the amount of energy consumed and the amount the body uses. But the body’s metabolism can change as users lose weight and alter their exercise habits.

These changes may differ significantly among people, depending on genetics, age and other factors.

Dr. Brian Parks and Dr. Aldons J. Lusis at the University of California, Los Angeles, set out to explore the factors affecting the body's response to a high-calorie diet in mice. They fed about 100 inbred strains of mice a normal chow diet until 8 weeks of age.

For the following 8 weeks, they gave the mice a diet designed to represent a typical fast food diet, with 32% of calories from fat and 25% from sugar.

The study was supported in part by NIH's National Heart, Lung and Blood Institute (NHLBI) and National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Results appeared on January 8, 2013, in Cell Metabolism.

The team saw a wide range of body fat across the mouse strains even during the normal chow feeding stage. The response to 8 weeks of a high-fat, high-sugar diet also varied widely.

Mice eating the “junk food” diet had increases in body fat ranging from none to more than 600% higher than mice who continued to eat a normal diet.

The researchers found that food intake correlated with body weight and lean mass. However, intake levels didn't account for the body fat changes seen with the high-fat, high-sugar diet.

The investigators estimated that more than 70% of these body fat differences could be attributed to genetics.

To identify specific regions associated with obesity, the scientists performed a genome-wide analysis of about 100,000 genetic variations, or single nucleotide polymorphisms (SNPs). They found 11 regions that were associated with obesity.

The regions contain several genes with known links to fat biology and metabolism in mice. Some have been linked to obesity in humans as well.

The researchers also analyzed gut microbe populations. They found that some mouse strains had large microbial shifts after eating the high-fat, high-sugar diet. Other strains of mice, however, showed little fluctuation. This finding shows that genetics strongly influences changes in gut microbes in response to diet.

“Our research demonstrates that body fat responses to high-fat, high-sugar diets have a very strong genetic component, and we have identified several genetic factors potentially regulating these responses,” Parks says. “Overall, our work has broad implications concerning the genetic nature of obesity and weight gain.”

The researchers now plan to explore the specific roles these genetic factors play in the interactions between diet and body weight.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Thursday, October 01, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
Grants to Help Identify Variants in the Genome’s Regulatory Regions
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Thursday, September 24, 2015
Grants Awarded to Explore the Genome’s Regulatory Regions that Affect Disease Risk
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Tuesday, September 22, 2015
NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Diet, Exercise, Smoking Habits and Genes Interact To Affect and Risk
NIH-funded study points to converging factors that drive disease-related inflammation.
Thursday, September 17, 2015
NIH Grants Seek Best Ways To Combine Genomic Information and EHRs
Researchers seek to better understand genomic basis of disease, provide tailored care to patients.
Friday, September 04, 2015
Cellular Factors that Shape the 3D Landscape of the Genome Identified
Researchers have identified 50 cellular factors required for the proper 3D positioning of genes by using novel large-scale imaging technology.
Tuesday, August 18, 2015
Nuclear Process in the Brain That May Affect Disease Uncovered
Scientists have shown that the passage of molecules through the nucleus of a star-shaped brain cell, called an astrocyte, may play a critical role in health and disease.
Tuesday, August 18, 2015
Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Scientists Adopt New Strategy to Find Huntington’s Disease Therapies
Large, international NIH-supported study uses precision medicine to tackle neurological disorders.
Tuesday, August 11, 2015
Scientific News
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Fatty Liver Disease and Scarring Have Strong Genetic Component
Researchers say that hepatic fibrosis, which involves scarring of the liver that can result in dysfunction and, in severe cases, cirrhosis and cancer, may be as much a consequence of genetics as environmental factors.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Finding Links and Missing Genes
A catalogue of large-scale genetic changes around the world.
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
A Natural History of Neurons
Diverse mutations reveal lineage of brain cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos