Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

One of the Key Circuits in Regulating Genes Involved in Producing Blood Stem cells is Deciphered

Published: Friday, February 01, 2013
Last Updated: Friday, February 01, 2013
Bookmark and Share
The finding will, in the future, allow obtaining cells in a lab for therapeutic purposes.

Researchers from the group on stem cells and cancer at IMIM (Hospital del Mar Medical Research Institute) have deciphered one of the gene regulation circuits which would make it possible to generate hematopoietic blood cells, i.e. blood tissue stem cells. This finding is essential to generate these cells in a laboratory in the future, a therapy that could benefit patients with leukaemia or other diseases who need a transplant and who, in many cases, do not have a compatible donor.

In the process of generating stem cells, many molecule signals intervene which, through a regulating circuit are induced at a certain moment and remain active during a specific time until they switch off so these cells can differentiate. Anna Bigas, the coordinator of the research group on stem cells and cancer at IMIM explains: “We discovered that the Notch protein, which is involved in the development of most tissues, is responsible for activating the gene GATA2 which is necessary to generate hematopoietic stem cells; at the same time, it induces the reproduction of its own repressor, HES-1”. The team lead by Bigas has also shown that this regulating circuit allows the limited production of GATA2, and this is essential for the production of hematopoietic stem cells.

The study was developed over 4 years and consisted in performing a large number of experiments with the collaboration of groups from Japan, Holland and the USA. On the one hand, researchers identified the mechanism regulating the gene GATA2 in hematopoietic stem cells of a mouse embryo and, on the other hand, they identified DNA sequences regulating this gene; i.e. the sequences of gene GATA2 where the Notch protein and the repressor HES-1 bind. After generating several mutations in these sequences, researchers saw that if the Notch protein does not bind to GATA 2, the gene is not activated, whereas if it’s the repressor HES-1 that doesn’t bind to it, then there is an over-production of the protein GATA 2. Researchers also proved that embryos where HES-1 has been eliminated may not generate functional hematopoietic stem cells due to excessive production of GATA 2.

One of the difficulties encountered by the researchers when carrying out this study is that, from a methodological approach, some of the required techniques were not possible to carry out at IMIM’s laboratories, and for this reason collaboration was established with the group lead by Prof. Masayuki Yamamoto at the Tohoku University School of Medicine in Sendai, Japan. The first signatory of the paper, Dr. Jordi Grau, travelled to Sendai for four months but, due to the earthquake in 2011, it was impossible to conclude the task. It was thanks to the collaborations established with the group lead by Prof. Elaine Dzierzak at the Erasmus University in Rotterdam that it was finally possible to continue with the project.

The process of generating stem cells specifically from tissue in a laboratory is being studied in many laboratories around the world, but this has not yet been achieved. This shows that we need further research into the mechanisms used be the embryo to generate these cells and which regulating genes are involved in this process. “We discovered a basic circuit but there are still many more to discover. Our end objective is to validate our results with cells coming from mouse embryonic stem cells and then being able to use this knowledge to generate human hematopoietic stem cells in a laboratory for therapeutic purposes. These cells could then be used for patients needing a hematologic transplant and do not have a compatible donor” concludes Dr. Bigas.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Assessing the Effectiveness of Genome-Editing Technologies
Researchers have developed a cost-effective and rapid method for assessing edits generated by CRISPR-Cas9 and other genome-editing technologies.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Alzheimer's Genetics Point To New Research Direction
A University of Adelaide analysis of genetic mutations which cause early-onset Alzheimer’s disease suggests a new focus for research into the causes of the disease.
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Fix for 3-Billion-Year-Old Genetic Error
Researchers at The University of Texas at Austin have developed a fix that allows RNA to accurately proofread for the first time.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Revealing the Genetic Causes of Bowel Cancer
A landmark study has given the most detailed picture yet of the genetics of bowel cancer — the UK's fourth most common cancer.
The Epigenetic Influences of Chronic Pain
Researchers at Drexel University College of Medicine are aiming to identify new molecular mechanisms involved in pain.
Fighting Resistant Blood Cancer Cells
Biologists present new findings on chronic myeloid leukemia and possible therapeutic approaches.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!