Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Changes to DNA On-Off Switches Affect Cells' Ability to Repair Breaks

Published: Wednesday, February 06, 2013
Last Updated: Wednesday, February 06, 2013
Bookmark and Share
Many proteins are involved in everyday DNA repair, but if they are mutated, the repair system breaks down and cancer can occur.

Cells have two complicated ways to repair these breaks, which can affect the stability of the entire genome. Roger A. Greenberg, M.D., Ph.D., associate investigator, Abramson Family Cancer Research Institute and associate professor of Cancer Biology at the Perelman School of Medicine, University of Pennsylvania, together with postdoctoral researcher Jiangbo Tang Ph.D. and colleagues, found a key determinant in the balance between two proteins, BRCA1 and 53BP1, in the DNA repair machinery. Breast and ovarian cancer are associated with a breakdown in the repair systems involving these proteins. Their findings appear in the latest online issue of Nature Structural & Molecular Biology.

The two proteins, BRCA1 and 53BP1, control which of two cell-repair mechanisms will be used: homologous recombination or non-homologous end-joining, technically speaking. This competition has proven to be a key factor in determining whether a cell becomes cancer prone as well as how a cancer cell will respond to chemotherapy.

The key step of the balance is acetylation, the chemical process of adding a compound called an acetyl group to other cellular molecules.

The researchers asked what cell signals determine whether BRCA or 53BP1 predominates at a DNA break site.

DNA in the nucleus is tightly packed around proteins called histones. Acetylation at a specific spot on histone H4 determines the answer. If H4 is acetylated at a specific location, then 53BP1 binding near the broken DNA region is strongly reduced. This leaves BRCA1 free to do the work, kicking in the homologous recombination tool to repair the break.

On the other hand, if acetylation is reduced, 53BP1 outcompetes BRCA1 at a break and the non-homologous end-joining tool repairs the break.

This mechanism can help explain resistance to a promising chemotherapy called PARP inhibition seen in patients and mouse models with BRCA1 mutations. Work from several other research teams surprisingly has shown that if neither BRCA nor 53BP1 are available, then the homologous recombination system goes into action even in the absence of BRCA1 and BRCA1 mutant cancer cells become resistant to PARP inhibitors.

Because of this, Greenberg says, there are some possible applications for making PARP chemotherapy more sensitive: “If you could inhibit specific acetylation events, then a patient’s response to PARP inhibitors might be enhanced by hyperactivating 53BP1 binding to breaks in the context of BRCA1 deficient cancers. What’s more, measuring the levels of acetylation at H4 might predict how responsive an individual is to PARP inhibitors.”

“The story didn’t fall into place the way we thought it would,” says Greenberg. “We didn’t realize that it was a combination of two epigenetic marks that drives the repair system. However, we were able to show that 53BP1 doesn’t bind well to regions of histone H4 that are acetylated at a specific location on H4. Collaboration with Georges Mer, a structural biologist at the Mayo Clinic, helped provide the molecular basis for these findings. We think there will be further complexity to this regulation, creating the possibility for the discovery of additional mechanisms that regulate DNA repair pathways and response to therapy and potential new targets for diagnosis and therapy.”

Co-authors are Nam Woo Cho, Erica M. Manion, Niraj M. Shanbhag, all from Penn, and Gaofeng Cui, Maria Victoria Botuyan, and Georges Mer, from the Department of Biochemistry and Molecular Biology, Mayo Clinic.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Targeting BRAF Mutations in Thyroid Cancer
Treating metastatic thyroid cancer patients harboring a BRAF mutation with vemurafenib showed anti-tumor activity in a third of patients.
Tuesday, July 26, 2016
First Atlas of Body Clock Gene Expression in Mammals Informs Timing of Drug Delivery
Penn Medicine study has implications for 100 top-selling US drugs, half of which target daily-oscillating genes.
Thursday, October 30, 2014
Ovarian Cancer Oncogene Found in "Junk DNA"
The study is published online in this week in Cancer Cell.
Wednesday, September 10, 2014
Researchers Identify Four New Genetic Risk Factors for Testicular Cancer
Large, first-of-its-kind study finds genomic regions associated with higher risk.
Wednesday, May 15, 2013
T-Cell Therapy Eradicates an Aggressive Leukemia in Two Children
CHOP/Penn Medicine oncology team reports complete remission in pediatric ALL patients.
Tuesday, March 26, 2013
Penn Study Details Dimmer Switch for Regulating Cell's Read of DNA Code
Findings have implications for cancer and neurological treatments.
Wednesday, January 09, 2013
Penn Study on Silencing of Tumor Suppressor Gene Suggests New Target for Lymphoma
Professors from the Perelman School of Medicine at the University of Pennsylvania, and their colleagues, found that a cancer-causing fusion protein works by silencing the tumor suppressor gene IL-2R common gamma-chain (IL-2R?). The results suggest news targets for lymphoma and other types of cancer.
Monday, December 12, 2011
Scientific News
Faecal Bacteria Linked to Body Fat
Researchers at King’s College London have found a new link between the diversity of bacteria in human poo – known as the human faecal microbiome - and levels of abdominal body fat.
Scientists Find Lethal Vulnerability in Treatment-Resistant Lung Cancer
The study describes how the drug Selinexor killed lung cancer cells and shrank tumors in mice when used against cancers driven by the aggressive and difficult-to-treat KRAS cancer gene.
How Baby’s Genes Influence Birth Weight And Later Life Disease
The large-scale study could help to target new ways of preventing and treating these diseases.
Genes Underlying Dogs’ Social Ability Revealed
The social ability of dogs is affected by genes that also seem to influence human behaviour, according to a new study from Linköping University in Sweden.
‘Cellbots’ Chase Down Cancer, Deliver Drugs Directly to Tumors
Programmable T cells shown to be versatile, precise, and powerful in lab studies.
Modified Yeast Shows Plant Response to Key Hormone
Researchers have developed a toolkit based on modified yeast to determine plant responses to auxin.
ReadCoor Launched to Commercialize 3D Sequencing Tech
ReadCoor will leverage the Wyss Institute’s method for simultaneously sequencing and mapping RNAs within cells and tissues to advance development of diagnostics.
NCI Collaborates with Multiple Myeloma Research Foundation
NCI collaborates with MMRF to incorporate genomic and clinical data into NCI Genomic Data Commons database.
Epigenetic Clock Predicts Life Expectancy
New research finds 5 percent of population ages faster, faces shorter lifespan.
Regulatory RNA Essential to DNA Damage Response
Researchers discover a tumour suppressor is stabilized by an RNA molecule, which helps cells respond to DNA damage.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!