Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Can Cancer Be Turned Against Itself?

Published: Thursday, February 07, 2013
Last Updated: Thursday, February 07, 2013
Bookmark and Share
Immune system can use melanoma's own proteins to kill off cancer cells, TAU researchers find.

Though a small group of proteins, the family called Ras controls a large number of cellular functions, including cell growth, differentiation, and survival. And because the protein has a hand in cellular division, mutated Ras, which can be detected in one-third of all tumors, contributes to many human cancers by allowing for the rapid growth of diseased cells.

Now Prof. Yoel Kloog of Tel Aviv University's Department of Neurobiology, along with Dr. Itamar Goldstein of TAU's Sackler Faculty of Medicine and the Sheba Medical Center and their students Helly Vernitsky and Dr. Oded Rechavi, has found that oncogenic Ras, which promotes cancer development, can also alert the immune system to the presence of cancer cells.

For the first time, the researchers have shown the transfer of oncogenic Ras in human cells from melanoma cells to T cells, which belong to a group of white blood cells that are part of the immune system. This transfer allows the immune cells to gather crucial intelligence on what they are fighting and develop the necessary cytokines, or signalling molecules, to kill the melanoma cells.

Prof. Kloog suggests that a drug that enhances the transfer of the oncogene from the tumor to the immune cells is a potential therapy to augment the anti-cancer immune response. This research has been published in the Journal of Immunology.

Finding the tipping point

Although they found that immune cells often exchange proteins among themselves, the discovery that melanoma cells transfer mutated Ras is an intriguing first. And it's this initial transfer that begins what the researchers call a positive feedback loop.

In the lab, researchers incubated T-cells from patients with human melanoma cells that had originated from tumors to track the process of handing-off various proteins. They uncovered a circuit that runs between the cancer and immune cells. Once the melanoma cells pass oncogenic Ras to the T-cells, the T-cells are activated and begin to produce cytokines, which enhances their capacity to kill cancer cells.

As these melanoma cells pass along the mutated Ras, the immune cells become increasingly active. Eventually, enough oncogenic material is transferred across the immune cells' threshold, causing the T-cells to act on the melanoma cells from which the oncogenic Ras was derived. Ultimately, this transfer tips the scales in favor of the immune cells, the researchers say.

Exploiting the information transfer

The next step is to develop a therapy that can enhance the transfer in patients with cancers linked to oncogenic Ras, says Prof. Kloog. And although their research has so far focused on melanoma, which is known to elicit the response of the immune system, he believes that this finding could be applicable to other types of cancers.

There is a constant balancing act between cancer cells and the immune system, says Dr. Goldstein. Under normal circumstances, the immune system will kill some cancerous cells on a daily basis. The disease becomes critical when the immune system can no longer keep cancer cells in check. Although there are many theories as to how cancer cells break free of this cycle, scientists are still attempting to discover why this occurs.

Prof. Kloog and Dr. Goldstein hope that this research leads to a better understanding of how the immune system fights tumors. "It's a part of the interaction between cancer and the immune system that is not well known," says Dr. Goldstein. "We are trying to gather more comprehensive data on all the proteins that are being passed around, and how this information impacts the immune system's response to cancer."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researcher Discovers Trigger of Deadly Melanoma
New research sheds light on the precise trigger that causes melanoma cancer cells to transform from non-invasive cells to invasive killer agents, pinpointing the precise place in the process where "traveling" cancer turns lethal.
Tuesday, August 04, 2015
Reversing Antibiotic Resistance in Bacteria
Scientists at Tel Aviv University say they have developed a tool that tackles the problem of antibiotic resistance while also providing a new approach to combating bacterial infections.
Tuesday, June 09, 2015
A Personal Antidepressant for Every Genome
TAU researchers discover gene that may predict human responses to specific antidepressants.
Wednesday, December 18, 2013
Scientific News
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Genetic Cause of Rare Allergy
Institute has identified a genetic mutation responsible for a rare form of inherited hives induced by vibratory urticaria.
Mitochondria Shown to Trigger Cell Ageing
An international team of scientists has for the first time shown that mitochondria, the batteries of the cells, are essential for ageing.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Validating the Accuracy of CRISPR-Cas9
IBS Researchers create multiplex Digenome-seq to find errors in CRISPR-Cas9 processes.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!