Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Recreating Natural Complex Gene Regulation

Published: Thursday, February 07, 2013
Last Updated: Thursday, February 07, 2013
Bookmark and Share
By reproducing in the laboratory the complex interactions that cause human genes to turn on inside cells, researchers have created a system they believe can benefit gene therapy research and the burgeoning field of synthetic biology.

This new approach should help basic scientists as they tease out the effects of “turning on” or “turning off” many different genes, as well as clinicians seeking to develop new gene-based therapies for human disease.

“We know that human genes are not just turned on or off, but can be activated to any level over a wide range. Current engineered systems use one protein to control the levels of gene activation,” said Charles Gersbach, assistant professor of biomedical engineering at Duke’s Pratt School of Engineering and member of Duke’s Institute for Genome Sciences and Policy. “However, we know that natural human genes are regulated by interactions between dozens of proteins that lead to diverse outcomes within a living system.

“In contrast to typical genetics studies that dissect natural gene networks in a top-down fashion, we developed a bottom-up approach, which allows us to artificially simulate these natural complex interactions between many proteins that regulate a single gene,” Gersbach said. “Additionally, this approach allowed us to turn on genes inside cells to levels that were not previously possible.”

The results of the Duke experiments, which were conducted by Pablo Perez-Pinera, a senior research scientist in Gersbach’s laboratory, were published on-line in the journal Nature Methods. The research was supported by the National Institutes of Health, the National Science Foundation, The Hartwell Foundation, and the March of Dimes.

Human cells have about 20,000 genes which produce a multitude of proteins, many of which affect the actions of other genes. Being able to understand these interactions would greatly improve the ability of scientists in all areas of biomedical research. However because of the complexity of this natural system, synthetic biologists create simple gene networks to have precise control over each component.  These scientists can use these networks for applications in biosensing, biocomputation, or regenerative medicine, or can use them as models to study the more complex natural systems.

“This new system can be a powerful new approach for probing the fundamental mechanisms of natural gene regulation that are currently poorly understood,” Perez-Pinera said. “In this way, we can further the capacity of synthetic biology and biological programming in mammalian systems.”

The latest discoveries were made possible by using a new technology for building synthetic proteins known as transcription activator-like effectors (TALEs), which are artificial enzymes that can be engineered to “bind” to almost any gene sequences. Since these TALEs can be easily produced, the researchers were able to make many of them to control specific genes.

“All biological systems depend on gene regulation,” Gersbach said. “The challenge facing bioengineering researchers is trying to synthetically recreate processes that occur in nature.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
Thursday, May 26, 2016
Poliovirus Therapy Wins 'Breakthrough' Status
FDA decision will fast-track research on breakthrough Duke brain cancer therapy.
Wednesday, May 18, 2016
Antibiotics Don't Promote Swapping of Resistance Genes
Bacterial resistance spreads through population dynamics, not an increase in gene transfers.
Wednesday, April 13, 2016
Genetic Elements that Drive Regeneration
Limb or organ regrowth may be hidden in our genes.
Friday, April 08, 2016
Immunity Genes Could Protect Some From E. Coli
When a child comes home from preschool with a stomach bug that threatens to sideline the whole family for days, why do some members of the family get sick while others are unscathed?
Monday, January 25, 2016
Travelling Salesman Uncorks Synthetic Biology Bottleneck
Computer program scrambles genetic codes for production of repetitive DNA and synthetic molecules.
Thursday, January 07, 2016
Cellular Stress Process Identified in Cardiovascular Disease
Combining the investigative tools of genetics, transcriptomics, epigenetics and metabolomics, a Duke Medicine research team has identified a new molecular pathway involved in heart attacks and death from heart disease.
Tuesday, November 10, 2015
Animals’ Genomic Buffers May Help Humans
Researchers at Duke University School of Medicine and Brigham and Women’s Hospital, Harvard Medical School have identified a mechanism that explains why some mutations can be disease-causing in one genome but benign in another.
Wednesday, July 01, 2015
New Gene Influences Apple or Pear Shape, Risk of Future Disease
Duke researchers have discovered that a gene called Plexin D1 controls both where fat is stored and how fat cells are shaped.
Tuesday, March 24, 2015
Bacterial Defense Mechanism Targets Duchenne Muscular Dystrophy
Gene therapy approach could treat 60 percent of Duchenne Muscular Dystrophy patients.
Friday, February 20, 2015
Gene Required for Recovery from Bacterial Infection Identified
Duke researchers have uncovered the genes that are normally activated during recovery from bacterial infection in the C. elegans worm. The finding could be key to new antibiotics and countering auto-immune disorders.
Monday, October 27, 2014
Cancer-Fighting Drugs Might Also Stop Malaria Early
A number of compounds have been identified which could be used to fight malaria.
Wednesday, August 27, 2014
Cancer’s Thirst For Copper Can Be Targeted
Drugs used to block copper absorption for a rare genetic condition may find an additional use as a treatment for certain types of cancer.
Thursday, April 10, 2014
Computational Methods Identify New Alloys
Duke University researchers have used computational methods to identify dozens of previously unknown platinum-group alloys.
Monday, January 06, 2014
Broad-Scale Genome Tinkering With Help of an RNA Guide
Duke researchers have devised a way to quickly and easily target and tinker with any gene in the human genome.
Monday, July 29, 2013
Scientific News
Supplement May Switch off Cravings for High-Calorie Foods
Propionate is made by bacteria in the gut after they digest fiber, with researchers finding higher levels of the substance can curb cravings for junk food.
New CAR T Cell Therapy Using Double Target Aimed at Solid Tumors
Researchers at Penn University have described how antibody, carbohydrate combination could apply to range of cancer types.
Erasing Unpleasant Memories with a Genetic Switch
Researchers from KU Leuven and the Leibniz Institute for Neurobiology have managed to erase unpleasant memories in mice using a 'genetic switch'.
New Method Detects Telomere Length for Research into Cancer, Aging
UT Southwestern Medical Center cell biologists have identified a new method for determining the length of telomeres, the endcaps of chromosomes, which can influence cancer progression and aging.
Assessing the Effectiveness of Genome-Editing Technologies
Researchers have developed a cost-effective and rapid method for assessing edits generated by CRISPR-Cas9 and other genome-editing technologies.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Alzheimer's Genetics Point To New Research Direction
A University of Adelaide analysis of genetic mutations which cause early-onset Alzheimer’s disease suggests a new focus for research into the causes of the disease.
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Fix for 3-Billion-Year-Old Genetic Error
Researchers at The University of Texas at Austin have developed a fix that allows RNA to accurately proofread for the first time.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!