Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Find Gene Variant Linked to Aortic Valve Disease

Published: Thursday, February 07, 2013
Last Updated: Thursday, February 07, 2013
Bookmark and Share
NIH-funded consortium finds connection between lipoprotein(a) and valve calcification.

A newly identified genetic variant doubles the risk of calcium buildup in the heart’s aortic valve. Calcium buildup is the most common cause of aortic stenosis, a narrowing of the aortic valve that can lead to heart failure, stroke, and sudden cardiac death.

An international genomics team called CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) found the variant in the gene for lipoprotein(a), a cholesterol-rich particle that circulates in the blood. CHARGE oversees genomic studies of five large study populations in the United States and Europe, including the Framingham Heart Study (FHS), which is a part of the National Heart, Lung, and Blood Institute (NHLBI) at the National Institutes of Health.

The findings will be published in the Feb. 7 issue of The New England Journal of Medicine.

“No medications tested to date have shown an ability to prevent or even slow progression of aortic stenosis, and treatments are limited beyond the major step of replacing the aortic valve,” said study co-author Christopher O’Donnell, M.D., M.P.H., senior director for genome research at the NHLBI and associate director of the FHS. “By identifying for the first time a common genetic link to aortic stenosis, we might be able to open up new therapeutic options.”

The CHARGE researchers conducted a genome-wide analysis of 2.5 million known genetic variants in a group of nearly 7,000 white participants. The analysis identified a variant in the lipoprotein(a), or Lp(a), gene that was highly correlated with calcification of the aortic valve, as measured by computed tomography (CT) scanning. Follow-up analysis in more than 6,000 additional participants, including Hispanics, African-Americans, and Chinese-Americans, confirmed this correlation. The variant was present in about 7 percent of the study population and the people who carry it generally had higher amounts of Lp(a) circulating in their blood. The function of Lp(a) is unknown, but it is associated with an elevated risk of heart disease.

Another independent analysis carried out by CHARGE followed participants in Sweden and Denmark, and found that people with the Lp(a) variant had higher risks of clinical heart valve disease and of needing valve replacement surgery.

“What makes these findings provocative is that we linked the genetic variant with a physiological change in lipoprotein levels, disease precursor in the form of calcium buildup, and fully diagnosed aortic valve disease, across multiple ethnicities,” O’Donnell said. “The study suggests a causal relation between Lp(a) and aortic valve disease, but further work will be needed to see whether medications that lower Lp(a) levels can lower the risk or slow the development of valve disease.”

In addition to the FHS, this work included data from the NHLBI’s Multi-Ethnic Study of Atherosclerosis, the Age Gene/Environment Susceptibility Study, the Heinz Nixdorf Recall Study, the Malmo Diet and Cancer Study, and the Copenhagen City Heart Study.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Exploring the Genome of the River Blindness Parasite
Researchers have decoded the genome of the parasite that causes the skin and eye infection known as river blindness.
Wednesday, December 07, 2016
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
Wednesday, December 07, 2016
Protein-Folding Gene Helps Heal Wounds
Researchers identified a protein that dramatically accelerates wound healing in animal models.
Wednesday, November 23, 2016
NIH Researchers Unveil New Wound-Healing Role for Protein-Folding Gene in Mice
The study found that topical treatment of an Hsp60-containing gel dramatically accelerates wound closure in a diabetic mouse model.
Friday, October 28, 2016
Gene Editing Corrects Sickle Cell Mutation
Researchers demonstrate a potential pathway to developing gene-editing treatments for sickle cell disease.
Wednesday, October 26, 2016
NIH Scientists Uncover Genetic Explanation for Frustrating Syndrome
Researchers at NIH have suggested that the multiple alpha tryptase gene copies might underlie health issues that affect a substantial number of people.
Tuesday, October 18, 2016
NIH Commits $6.7 M to Advance DNA, RNA Sequencing Technology
"Can you believe they make DNA sequencers the size of staplers?" asked Meni Wanunu, Ph.D. "Ideas that were crazy twenty years ago are now happening!"
Friday, October 07, 2016
“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
Monday, September 26, 2016
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Wednesday, September 21, 2016
Catalogue of Human Genetic Diversity Expands
The largest data set of human exomes to date has been assembled to better study seqence variants and their consequences.
Wednesday, September 07, 2016
$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Public Support for National Study
Survey shows the majority of respondents support or show willingness for national precision medicine study.
Thursday, August 18, 2016
Schizophrenia, Autism Share Genetic Causes
Monkey brain developmental atlas pinpoints when, where genes activate.
Tuesday, August 16, 2016
How Breast Cancers Resist Chemotherapy
Researchers discovered an unexpected way that breast cancers cells with mutant BRCA1 or BRCA2 genes acquire drug resistance and evade chemotherapies.
Wednesday, August 10, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Diabetes Missing Link Discovered
Researchers from the University of Auckland have shown that beta catenin plays a vital role in the control of insulin release from the pancreas.
Study Reveals New Role for Hippo Pathway in Suppressing Cancer Immunity
Hippo pathway signaling regulates organ size by moderating cell growth, apoptosis and stem cell renewal, but dysregulation contributes to cancer development.
Gene Editing Yields Tomatoes That Ripen Weeks Earlier
Research team develop method to make tomato plants flower and ripen fruit two weeks faster than current growth rates.
Exploring the Genome of the River Blindness Parasite
Researchers have decoded the genome of the parasite that causes the skin and eye infection known as river blindness.
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
Unexpected Role for Epigenetic Enzymes in Cancer
Researchers use epigenetics to identify the role of an enzyme family as regulators of genetic message interpretation in yeast.
Genetic Links to Brain Cancer Cell Growth
Researchers discover clues to tumour behaviour from genetic differences between brain cancer cells and normal tissue cells.
Gene Therapy Maintains Clotting Factor for Hemophilia Patients
Following a single gene therapy dose, the highest levels of an essential blood clotting factor IX were observed in hemophilia B patients.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!