Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Sigma® Life Science Launches Tough Decoy miRNA Inhibitors

Published: Monday, February 18, 2013
Last Updated: Monday, February 18, 2013
Bookmark and Share
Company has released Tough Decoy RNAs in collaboration with University of Tokyo Drs. Hideo Iba and Takeshi Haraguchi.

Sigma-Aldrich® Corporation has announced that Sigma Life Science, its innovative biological products and services business, through an exclusive collaboration with Drs. Hideo Iba and Takeshi Haraguchi at the University of Tokyo, has released MISSION® Synthetic and Lentiviral microRNA Inhibitors based upon the Tough Decoy (TuD) design for the long-term suppression of any miRNA endogenous to humans or mice.

Custom designs for other species are available upon request. Each microRNA inhibitor is designed using a proprietary algorithm that evaluates all possible sequences for the design predicted to best maintain the TuD structure, providing maximal miRNA recognition and binding.

For more information, visit www.sigma.com/inhibitors.

Naturally-occurring miRNAs inhibit translation of a large percentage of mRNAs encoding human proteins and play pivotal roles in oncogenesis, development, cell differentiation, and immune responses.

Iba and Haraguchi invented TuD RNAs as a more potent tool to suppress specific miRNAs and thus investigate their biological functions.

In contrast to current approaches that use single-stranded RNAs, such as sponge decoys and locked nucleic acids, TuD RNAs are double-stranded.

This, along with a stem-loop stabilized secondary structure, resists cellular nuclease degradation and facilitates sustained miRNA inhibition for longer than one month.

In addition, both strands of a TuD RNA contain a miRNA binding site for more efficient sequestration of target miRNAs at lower, nanomolar concentrations.

“Drs. Iba and Haraguchi’s Tough Decoy RNAs are an elegant and more practical tool for exploring the impact of microRNA gene regulation on human disease. Sigma Life Science’s mission is to support this field’s rapid development by making keystone technologies like this broadly accessible,” says Dr. Supriya Shivakumar, Director of Emerging Technologies at Sigma Life Science.

Sigma Life Science provides the TuD RNAs in both synthetic and lentiviral formats to support transient miRNA knockdown as well as long-term miRNA suppression without repeated transfections.

The miRNA binding sites are designed using human and mouse sequence data from the most recent version of miRBase (v.19).

Many other tools for miRNA screening, identification, and validation experiments are available from Sigma Life Science. These include synthetic human miRNA mimics, a miRNA isolation kit, a method to identify the specific gene(s) that a miRNA targets (licensed exclusively from Dr. Joop Gäken at King’s College London), and a library of human 3′UTRs for validating many miRNA gene targets.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
First Large-Scale Proteogenomic Study of Breast Cancer
The study offers understanding of potential therapeutic targets.
Fungi – A Promising Source Of Chemical Diversity
Moulds and plants share similar ways in alkaloid biosynthesis .
Great Migration and African-American Genomic Diversity
Study examines genetic data to analyze regional differences in ancestry.
Faster, More Efficient CRISPR Editing
UC Berkeley scientists have developed a quicker and more efficient method to alter the genes of mice with CRISPR-Cas9, simplifying a procedure growing in popularity because of the ease of using the new gene-editing tool.
New Tool Could Change How Infectious Diseases Are Diagnosed
Scientists at the University of Utah School of Medicine, ARUP Laboratories, and IDbyDNA, Inc., have developed ultra-fast, meta-genomics analysis software called Taxonomer that dramatically improves the accuracy and speed of pathogen detection.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!