" "
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Yeast Study Yields Potential for New Cholesterol, Anti-Fungal Drugs

Published: Thursday, February 28, 2013
Last Updated: Thursday, February 28, 2013
Bookmark and Share
While studying a mutant strain of yeast, Purdue University researchers may have found a new target for drugs to combat cholesterol and fungal diseases.

Scott Briggs, an associate professor of biochemistry, and Paul South, a postdoctoral researcher, were looking at how histones, the proteins that DNA wraps itself around, are affected by environmental factors, a field called epigenetics. When histones are modified, they change how genes are expressed and how cells behave.

One of the research team's yeast mutants lacks a methyltransferase called Set1, which is a protein that modifies histones. In this case, the lack of the methyltransferase decreases the amount of ergosterol production. Ergosterol is the equivalent of human cholesterol, and the biological pathways that create ergosterol in yeast and cholesterol in humans are similar, with both being essential for cellular membrane formation and integrity.

"So, if we could actually design an inhibitor to this methyltransferase, we potentially could have another drug to lower cellular cholesterol or one that could work in conjunction with current cholesterol-lowering drugs," said Briggs, whose findings were published in the Proceedings of the National Academy of Sciences.

The same yeast mutant with decreased ergosterol production was particularly sensitive to an anti-fungal metabolite called Brefeldin A, a drug primarily used as a research tool to study protein transport in cells.

"If you don't have this methyltransferase, cells grow slower in the presence of this anti-fungal metabolite," South said. "That means that a drug that inhibits the methyltransferase could also be used as an anti-fungal drug and potentially be used as another tool to fight drug-resistant fungal infections."

Development of new anti-fungal drugs could help with difficult-to-treat fungal infections, such as the fungal meningitis outbreak last year from contaminated drugs linked with a Massachusetts compounding pharmacy.

Briggs and South are now studying whether the yeast mutant that is more sensitive to Brefeldin A would be more susceptible to other clinically relevant anti-fungal drugs.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Mass Spectrometry Tool Helps Guide Brain Cancer Surgery
A tool to help brain surgeons test and more precisely remove cancerous tissue was successfully used during surgery, according to a Purdue University and Brigham and Women's Hospital study.
Wednesday, July 02, 2014
Helping Genes Get Out of the Starting Blocks Faster
Yeast can quickly adapt to changes in its environment with the help of molecules known as long non-coding RNAs, a Purdue study shows.
Friday, February 21, 2014
Cell-Detection System Promising for Medical Research, Diagnostics
Researchers are developing a system that uses tiny magnetic beads to quickly detect rare types of cancer cells circulating in a patient's blood.
Thursday, October 03, 2013
Purdue Innovation could Improve Personalized Cancer-Care Outcomes
An innovation could improve therapy selection for personalized cancer care by helping specialists better identify the most effective drug treatment combinations for patients.
Friday, August 16, 2013
Nanoparticles, 'pH Phoresis' Could Improve Cancer Drug Delivery
Researchers have developed a concept to potentially improve delivery of drugs for cancer treatment using nanoparticles.
Wednesday, July 10, 2013
New Imaging Technology Could Reveal Cellular Secrets
Researchers have married two biological imaging technologies, creating a new way to learn how good cells go bad.
Friday, April 26, 2013
Gene's function May Give New Target for Cancer Drugs
Scientists have determined that a gene long known to be involved in cancer cell formation and chemotherapy resistance is key to proper RNA creation, and could one day lead to new therapies and drug targets.
Thursday, September 13, 2012
Imaging Tool Tracks Carbon Nanotubes in Living Cells
Researchers have demonstrated a new imaging tool for tracking structures called carbon nanotubes in living cells and the bloodstream, which could aid efforts to perfect their use in biomedical research and clinical medicine.
Thursday, December 08, 2011
Genome Sequencing Speeds Ability to Improve Soybeans
Purdue researchers are sequencing the soybean genome to better understand its genes and to improve its characteristics.
Friday, January 15, 2010
Scientific News
Genetic Cause of Rare Allergy
Institute has identified a genetic mutation responsible for a rare form of inherited hives induced by vibratory urticaria.
Mitochondria Shown to Trigger Cell Ageing
An international team of scientists has for the first time shown that mitochondria, the batteries of the cells, are essential for ageing.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Validating the Accuracy of CRISPR-Cas9
IBS Researchers create multiplex Digenome-seq to find errors in CRISPR-Cas9 processes.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
How to Unlock Inaccessible Genes
An international team of biologists has discovered how specialized enzymes remodel the extremely condensed genetic material in the nucleus of cells in order to control which genes can be used.
Viral Gene Editing System Corrects Genetic Liver Disease
Penn study has implications for developing safe therapies for an array of rare diseases via new gene cut-and-paste methods.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!