Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Immune-cell Therapy could Improve Melanoma Treatment

Published: Tuesday, March 26, 2013
Last Updated: Tuesday, March 26, 2013
Bookmark and Share
A new study of genetically modified immune cells by scientists from UCLA and the California Institute of Technology could help improve a promising treatment for melanoma, an often fatal form of skin cancer.

The research, which appears March 21 in the advance online edition of the journal Cancer Discovery, was led by James Heath, a member of UCLA's Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research and UCLA's Jonsson Comprehensive Cancer Center. Heath is a professor of molecular and medical pharmacology at UCLA and also holds the Elizabeth W. Gilloon Chair in Chemistry at Caltech.

The melanoma treatment uses T-cells — immune cells that play a major role in fighting infection — taken from patients with melanoma. The cells are then genetically modified in the laboratory so that when they are reintroduced into a patient's bloodstream, they specifically attack melanoma tumors. In early clinical trials, this treatment was shown to shrink tumors dramatically in many patients, but the positive effects were often short-lived.

The UCLA and Caltech researchers found that after the engineered T-cells were returned to patients, their efficacy faded within two to three weeks. Surprisingly, however, once the engineered cells were no longer effective, a new group of non-engineered T-cells arose that had a similar tumor-killing effect that lasted even longer, the scientists discovered.

Using newly developed nanotechnology chips to perform multidimensional and multiplexed immune-monitoring assays, the researchers were able to examine at high resolution single engineered T-cells taken at different times from patients undergoing the therapy, each of whom had a different level of response to the treatment.

"The engineered T cells did not recover their tumor-killing effect," Heath said, "but after one month, another group of T cells appeared that did have tumor-killing effects for another 90 days. Those were not the genetically engineered T-cells, and they appeared to be a byproduct of a process called 'antigen spreading' by the original engineered cells. After 90 days, those cells lost their tumor-killing ability as well."

Antigen spreading is a process by which a T-cell that has been engineered to attack a particular tumor expands its immune response to other T-cells in the body, which then attack the same tumor but are focused on different antigens. (Antigens are substances that trigger a response by the body's immune system.) Scientists may be able to use this process, Heath stressed, to improve T-cell-based treatments for melanoma.

"Our results have led us to possible ways to improve the T-cell therapy to extend its positive effect," Heath said. "We need to incorporate strategies that maintain the functional properties of the engineered T-cells used for therapy. This might include modifying how we grow the T-cells in the laboratory to make their tumor-killing effect last longer or make them resistant to the effects of the patient's T-cells as they recover from pretreatment chemotherapy conditioning and possibly increase the antigen spreading of anti-tumor T-cells."

UCLA professor of medicine Dr. Antoni Ribas was one of Heath's key collaborators on the research.

"One of the possible approaches to resolve the problem identified by this study is to use engineered blood stem cells - instead of the peripheral blood used in the original trials - with this therapy in the hope that the engineered blood stem cells will provide a renewable source of engineered T cells," said Ribas, a member of UCLA's Broad Stem Cell Research Center and Jonsson Cancer Center.

Caltech's Chao Ma, the study's first author, said the findings and the use of the new nanotechnology assay process hold promise for treatments of other disease as well.

"This study points to the value of these single-cell functional analyses for probing the successes and failures of a sophisticated immunotherapy," he said. "I am excited to see its use as a monitoring tool to understand a spectrum of other cellular immunotherapies in the near future."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Monday, October 19, 2015
Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Rare Childhood Leukemia Reveals Surprising Genetic Secrets
A coalition of leukemia researchers led by scientists from UC San Francisco has discovered surprising genetic diversity in juvenile myelomonocytic leukemia (JMML), a rare but aggressive childhood blood cancer.
Thursday, October 15, 2015
Double Enzyme Hit May Explain Common Cancer Drug Side Effect
Mouse study suggests genomic screening before treatment may help prevent anemia.
Wednesday, October 14, 2015
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Revealing the Genetic Causes of Bowel Cancer
A landmark study has given the most detailed picture yet of the genetics of bowel cancer — the UK's fourth most common cancer.
The Epigenetic Influences of Chronic Pain
Researchers at Drexel University College of Medicine are aiming to identify new molecular mechanisms involved in pain.
Fighting Resistant Blood Cancer Cells
Biologists present new findings on chronic myeloid leukemia and possible therapeutic approaches.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
Mothers Obesity Could be Passed on in mtDNA
Obesity can predispose offspring in multiple generations to metabolic problems.
New Imaging Method Reveals Nanoscale Details about DNA
Enhancement to super-resolution microscopy shows orientation of individual molecules, providing a new window into DNA’s structure and dynamics.
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
Naked Mole Rat Exhibits “Extraordinary” Cancer Resistance
Scientists are getting closer to understanding the anti-cancer mechanism of the naked mole rat by making induced pluripotent stem cells.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!