Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Rewinding the Clock with Epigenomics

Published: Wednesday, April 03, 2013
Last Updated: Wednesday, April 03, 2013
Bookmark and Share
How does a single cell give rise to a fully formed organism? Insights from induced pluripotent stem (iPS) cells have helped scientists develop a deeper understanding of this process.

Since scientists discovered how to create iPS cells seven years ago, researchers have begun to see parallels between the steps required to make iPS cells in the dish and the molecular events that unleash a cancer cell. In a review article published this week in Science, three researchers from the Broad Institute and Massachusetts General Hospital – Brad Bernstein, Mario Suvà, and Nicolo Riggi, describe deep insights that have been gained about features shared between oncogenesis (development of cancer) and induced pluripotency as well as directed differentiation (manipulating stem cells to become particular kinds of cells).

Many of these common features are not found within genes. Instead, events occur in the epigenome, which literally translates to “on top of” the genome. Epigenomics looks beyond our DNA sequence at the stable factors that change our genetic instructions.

Bernstein, a Broad associate member and a professor of pathology at Massachusetts General Hospital, has been studying the role of epigenomics in development and human cancer for the last 14 years. Bernstein answered several of our questions about epigenomics back in 2010. Below is an excerpt from our original interview:

Q: Can you give a couple of visible examples of epigenetics in action?

Brad Bernstein: The calico cat is a fun example. Calico cats are always female so they have two X-chromosomes. The different patches of fur color occur because there is a gene for coat color on the X, which is selectively inactivated in clonal patches of cells. The inactivation occurs by chemical modification of the DNA – there is no change in the DNA sequence – so it’s epigenetic. A less fun example is that epigenetic events also contribute to many types of cancer.

Q: Why did you decide to study epigenomics?

BB: I liked that it was uncharted territory. It was also clear early on that the tools of genomics had the potential to transform a field. So it was a good fit for me, and the Broad.

Q: What’s your favorite thing about working at the Broad Institute and Harvard-affiliated hospitals?

BB: I like working with interesting and capable people who think about big problems. There is also a lot of dedication to the mission, and people across the institution are always enthusiastic about moving science forward.

Q: What are a couple of the big questions in science that you would like to see answered in the next ten years?

BB: A big question in our field is the relationship between environment and the epigenome. We know that environmental cues can be remembered for a long-time – for example, in utero starvation can have long-term health consequences. We also know from model organism studies that certain chromatin structures are inherited when cells divide. There is some reason to think these two observations are related. But it’s really not clear at this point. My hope is that new tools for more precise and comprehensive analysis of the epigenome can begin to address this question and eventually help us understand how environment or perhaps even stochastic changes in chromatin contribute to human disease.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Screen of Human Genome Reveals Set of Genes Essential for Cellular Viability
Using two complementary analytical approaches, scientists at Whitehead Institute and Broad Institute of MIT and Harvard have for the first time identified the universe of genes in the human genome essential for the survival and proliferation of human cell lines or cultured human cells.
Monday, October 19, 2015
DARPA Awards $32 Million Contract to MIT, Broad Institute Foundry
A facility at the Broad Institute of MIT and Harvard and MIT that aims to achieve the full potential of engineering biology has received a five-year, $32 million contract from the Defense Advanced Research Projects Agency (DARPA).
Monday, September 28, 2015
Scientists Discover New System For Human Genome Editing
CRISPR-Cpf1 system could disrupt both scientific and commercial landscape.
Monday, September 28, 2015
Broad Institute & Google Genomics Combine Bioinformatics and Computing Expertise
Both companies explore how to break down major technical barriers that increasingly hinder biomedical research.
Thursday, June 25, 2015
CRISP-Disp Leverages CRISPR-Cas9 to Deliver RNA Structures to Targets in the Genome
A team of researchers from the Broad Institute and the Harvard Stem Cell Institute has developed CRISP-Disp, a method that expands on the CRISPR-Cas9 system, allowing researchers to display multiple, large RNA structures on the Cas9 protein.
Wednesday, June 10, 2015
GTEx: Useful Expression For Cancer Research
GTEx Project has recently published several papers reporting on findings from its two-year pilot phase.
Tuesday, May 26, 2015
Single-cell Analysis Hits its Stride
Advances in technology and computational analysis enable scale and affordability, paving the way for translational studies.
Saturday, May 23, 2015
Highly Efficient New Cas9 for In Vivo Genome Editing
New finding is expected to expand therapeutic and experimental applications of CRISPR.
Tuesday, April 07, 2015
Broad Institute of MIT and Harvard and Bayer Healthcare Expand their Partnership
Collaboration to develop therapies for cardiovascular disease.
Thursday, April 02, 2015
In vivo CRISPR-Cas9 Screen Sheds Light On Cancer Metastasis And Tumor Evolution
Genome-scale study points to drivers of tumor evolution and metastasis, provides roadmap for future in vivo Cas9 screens.
Friday, March 06, 2015
Scientists Map the Human Loop-ome, Revealing a New Form of Genetic Regulation
Researchers describe the results of a five-year effort to map, in unprecedented detail, how the 2-meter long human genome folds inside the nucleus of a cell.
Tuesday, December 23, 2014
Disorder in Gene-Control System is a Defining Characteristic of Cancer, Study Finds
Findings indicate that the disarray in the on-off mechanism is one of the defining characteristics of cancer.
Tuesday, December 23, 2014
Two Studies Identify A Detectable, Pre-Cancerous State In The Blood
Findings pave way for new lines of cancer research focused on detection and prevention.
Thursday, November 27, 2014
Dramatic Response And Resistance To Cancer Drug Traced
Sequencing reveals why thyroid tumor responded to, and eventually resisted, treatment.
Friday, October 10, 2014
Study Expands the Cancer Genomics Universe
The universe of cancer mutations is much bigger than previously thought, and key cancer genes are still to be discovered.
Tuesday, January 28, 2014
Scientific News
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH has announced that decipher the genome of the blacklegged tick which could lead to new tick control methods.
"Dark Side" of the Transcriptome
New approach to quantifying gene "read-outs" reveals important variations in protein synthesis and has implications for understanding neurodegenerative diseases.
Individuals' Medical Histories Predicted by their Noncoding Genomes
Researchers have found that analyzing mutations in regions of the genome that control genes can predict medical conditions such as hypertension, narcolepsy and heart problems.
New Source of Mutations in Cancer
Recently, a new mutation signature found in cancer cells was suspected to have been created by a family of enzymes found in human cells called the APOBEC3 family.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Biosensors on Demand
New strategy results in custom "designer proteins" for sensing a variety of molecules.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!