Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

New System to Improve DNA Sequencing

Published: Tuesday, April 09, 2013
Last Updated: Tuesday, April 09, 2013
Bookmark and Share
A sensing system developed at Cambridge is being commercialised in the UK for use in rapid, low-cost DNA sequencing.

System would make the prediction and diagnosis of disease more efficient and individualised treatment more affordable.

Dr Ulrich Keyser of the University’s Cavendish Laboratory, along with PhD student Nick Bell and other colleagues, has developed a system which combines a solid-state nanopore with a technique known as DNA origami, for use in DNA sequencing, protein sensing and other applications. The technology has been licensed for development and commercialisation to UK-based company Oxford Nanopore, which is developing portable, low-cost DNA analysis sequencing devices.

Nanopore technology has the potential to revolutionise DNA sequencing and the analysis of a range of other biological molecules, providing dramatic improvements in power, cost and speed over current methods.

A nanopore is an extremely small hole - between one and 100 nanometres in diameter – typically contained in a membrane between two chambers containing a salt solution and the molecule of interest. When the molecules pass through the nanopores, they disrupt an ionic current through the nanopore and this difference in electrical signals allows researchers to determine certain properties of those molecules.

Over the past decade, researchers have been investigating various methods of constructing nanopores in order to improve accuracy and reliability. A key part of this is the ability to finely control the shape and surface chemistry of the nanopores, which would maximise sensitivity and facilitate the identification of a wider range of molecules.

Currently, there are two main types of nanopores in use: solid state nanopores constructed by fabricating tiny holes in silicon or graphene with electron beam equipment; and biological nanopores made by inserting pore-forming proteins into a biological membrane such as a lipid bilayer.

Biological nanopores are cheap and easy to manufacture in large quantities of identical pores.  It is possible through genetic engineering to define their structure at the atomic level, varying the pores for the analysis of different target molecules. However, they are only suitable for a limited range of applications, and may be replaced over time by solid-state nanopores. At present, solid-state nanopores are difficult to manufacture and are not as sensitive as biological nanopores, as it is difficult to position specific chemical groups on the surface.

In collaboration with researchers at Ludwig Maximilian University in Munich, Dr Keyser and his team have developed a hybrid nanopore which combines a solid-state material, such as silicon or graphene, and DNA origami - small, well-controlled shapes made of DNA.

“The DNA origami structures can be formed into any shape, allowing highly accurate control of the size and shape of the pore, so that only molecules of a certain shape can pass through,” says Dr Keyser. “This level of control allows for far more detailed analysis of the molecule, which is particularly important for applications such as phenotyping or gene sequencing.”

Since complementary sequences of DNA can bind to one another, the origami structures can be customised so that functional groups, fluorescent compounds and other molecular adapters can be added to the DNA strands with sub-nanometre precision, improving sensitivity and reliability. Additionally, hundreds of billions of self-assembling origami structures can be produced at the same time, with yields of up to 90 per cent.

Recent research by the team, published in the journal Lab on a Chip, has shown that up to 16 measurements can be taken simultaneously, allowing for much higher data throughput and screening of different DNA origami structures.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Greater Understanding Of Polycystic Ovary Syndrome
A new genetic study of over 200,000 women reveals the underlying mechanisms of polycystic ovary syndrome, as well as potential interventions.
Wednesday, September 30, 2015
Maintaining Healthy DNA Delays Menopause
An international study of nearly 70,000 women has identified more than forty regions of the human genome that are involved in governing at what age a woman goes through menopause.
Tuesday, September 29, 2015
New Consortium to Develop and Study Early Stage Drugs
An innovative new Consortium will act as a ‘match-making’ service between pharmaceutical companies and researchers in Cambridge with the aim of developing and studying precision medicines for some of the most globally devastating diseases.
Thursday, July 30, 2015
Expression of Certain Genes Changes with the Seasons
As the seasons change, so do the expression levels of many human genes, including ones involved in immune function, according to new research.
Thursday, May 14, 2015
Gene Discovery Provides Clues To How TB May Evade The Immune System
The largest genetic study of TB susceptibility to date has led to a potentially important new insight into how the pathogen manages to evade the immune system.
Tuesday, March 17, 2015
Human Genome Includes 'Foreign' Genes Not From Our Ancestors
Many animals, including humans, acquired essential ‘foreign’ genes from microorganisms co-habiting their environment in ancient times, according to research published in the open access journal Genome Biology.
Monday, March 16, 2015
Order Matters: Sequence Of Genetic Mutations Determines How Cancer Behaves
The order in which genetic mutations are acquired determines how an individual cancer behaves, according to research from the University of Cambridge, published today in the New England Journal of Medicine.
Thursday, February 12, 2015
Using Genome Sequencing to Track MRSA in Under-resourced Hospitals
Whole genome sequencing of MRSA from a hospital in Asia has demonstrated patterns of transmission in a resource-limited setting, where formal screening procedures are not feasible.
Thursday, December 11, 2014
Amazing Feet Of Science: Researchers Sequence The Centipede Genome
What it lacks in genes, it certainly makes up for in legs: the genome of the humble centipede has been found to have around 15,000 genes – around 7,000 fewer than a human.
Wednesday, November 26, 2014
Imaging The Genome
University of Cambridge study allows researchers to peer into unexplored regions of the genome and understand the role played by more than 250 genes.
Wednesday, October 29, 2014
Scientists Discover a Molecular ‘Switch’ in Cancers of the Testis and Ovary
Research could lead to new drugs to turn ‘switch’ off.
Wednesday, August 07, 2013
Four-Stranded ‘Quadruple Helix’ DNA Structure Proven to Exist in Human Cells
Discovery opens up possibilities for a new generation of targeted therapies for cancer.
Monday, January 21, 2013
Cambridge Scientist Appointed Inaugural Jubilee Professor of the Indian Academy of Sciences
The Indian Academy of Sciences has appointed Professor Ashok Venkitaraman from the University of Cambridge as its first Jubilee Professor in 2012.
Friday, June 29, 2012
Researcher at UPC’s Terrassa Campus Discovers Genetic Circuit that Regulates Behavior of Stem Cells
The circuit explains the fact that stem cells are always prepared to change into any type of cell.
Thursday, August 27, 2009
Cambridge Botanist Awarded ‘America’s Nobel’ Prize for Medical Research
David Baulcombe, the Professor of Botany at Cambridge University, is being honored with the 2008 Lasker Award for Basic Medical Research.
Friday, October 31, 2008
Scientific News
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos