Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Coelacanth Genome Similar to that of Fossils

Published: Thursday, April 18, 2013
Last Updated: Thursday, April 18, 2013
Bookmark and Share
Unexpected insights from a fish with a 300-million-year-old fossil record.

An international team of researchers has decoded the genome of a creature whose evolutionary history is both enigmatic and illuminating: the African coelacanth. A sea-cave dwelling, 5-foot-long fish with limblike fins, the coelacanth was once thought to be extinct. A living coelacanth was discovered off the African coast in 1938, and since then, questions about these ancient-looking fish have loomed large.

Coelacanths today closely resemble the fossilized skeletons of their ancestors of more than 300 million years ago. Its genome confirms what many researchers had long suspected: Genes in coelacanths are evolving more slowly than in other organisms.

“We found that the genes overall are evolving significantly slower than in every other fish and land vertebrate that we looked at,” said Jessica Alföldi, a research scientist at the Broad Institute of Harvard and MIT and co-first author of a paper on the coelacanth genome, which appears in Nature this week. “This is the first time that we’ve had a big enough gene set to really see that.”

Researchers hypothesize that this slow rate of evolution may be because coelacanths simply have not needed to change: They live primarily off the Eastern African coast (a second coelacanth species lives off the coast of Indonesia), at ocean depths where relatively little has changed over the millennia.

“We often talk about how species have changed over time,” said Kerstin Lindblad-Toh, scientific director of the Broad Institute’s vertebrate genome biology group and senior author. “But there are still a few places on earth where organisms don’t have to change, and this is one of them. Coelacanths are likely very specialized to such a specific, non-changing, extreme environment — it is ideally suited to the deep sea just the way it is.”

Because of their resemblance to fossils dating back millions of years, coelacanths today are often referred to as “living fossils” — a term coined by Charles Darwin. But the coelacanth is not a relic of the past brought back to life: It is a species that has survived, reproduced, but changed very little in appearance for millions of years. “It’s not a living fossil; it’s a living organism,” said Alföldi. “It doesn’t live in a time bubble; it lives in our world, which is why it’s so fascinating to find out that its genes are evolving more slowly than ours.”

The coelacanth genome has also allowed scientists to test other long-debated questions. For example, coelacanths possess some features that look oddly similar to those seen only in animals that dwell on land, including “lobed” fins, which resemble the limbs of four-legged land animals (known as tetrapods). Another odd-looking group of fish known as lungfish possesses lobed fins, too. It is probable that one of the ancestral lobed-finned fish species gave rise to the first four-legged amphibious creatures to climb out of the water and up onto land, but until now, researchers could not determine which of the two was the likelier candidate.

In addition to sequencing the full genome — nearly 3 billion “letters” of DNA — from the coelacanth, the researchers also looked at RNA content from the coelacanth (both the African and Indonesian species) and from the lungfish. This information allowed them to compare genes in use in the brain, kidneys, liver, spleen, and gut of lungfish with gene sets from coelacanths and 20 other vertebrate species. Their results suggested that tetrapods are more closely related to lungfish than to the coelacanth.

However, the coelacanth is still a critical organism to study to understand what is often called the water-to-land transition. The lungfish may be more closely related to land animals, but its genome remains inscrutable: At 100 billion letters in length, the lungfish genome is simply too unwieldy for scientists to sequence, assemble, and analyze. The coelacanth’s more modest genome (comparable in length to our own) is yielding valuable clues about the genetic changes that may have allowed tetrapods to flourish on land.

By looking at what genes were lost when vertebrates came on land as well as what regulatory elements — parts of the genome that govern where, when, and to what degree genes are active — were gained, the researchers made several unusual discoveries:

Sense of smell. The team found that many regulatory changes influenced genes involved in smell perception and detecting airborne odors. They hypothesize that as creatures moved from sea to land, they needed new means of detecting chemicals in the environment around them.

Immunity. The researchers found a significant number of immune-related regulatory changes when they compared the coelacanth genome to the genomes of land animals. They hypothesized that these changes may have been part of a response to new pathogens encountered on land.

Evolutionary development. Researchers found several key genetic regions that may have been “evolutionarily recruited” to form tetrapod innovations such as limbs, fingers and toes, and the mammalian placenta. One of these regions, known as HoxD, harbors a particular sequence that is shared across coelacanths and tetrapods. It is likely that this sequence from the coelacanth was co-opted by tetrapods to help form hands and feet.

Urea cycle. Fish get rid of nitrogen by excreting ammonia into the water, but humans and other land animals quickly convert ammonia into less-toxic urea using the urea cycle. Researchers found that the most important gene involved in this cycle has been modified in tetrapods.

The coelacanth genome may hold other clues for researchers investigating the evolution of tetrapods. “This is just the beginning of many analyses on what the coelacanth can teach us about the emergence of land vertebrates, including humans, and, combined with modern empirical approaches, can lend insights into the mechanisms that have contributed to major evolutionary innovations,” said Chris Amemiya, a member of the Benaroya Research Institute and co-first author of the Nature paper. Amemiya is also a professor at the University of Washington.

Sequencing the full coelacanth genome was uniquely challenging for many reasons. Coelacanths are an endangered species, so samples available for research are almost nonexistent. This meant that each sample obtained was precious: Researchers would have “one shot” at sequencing the collected genetic material, according to Alföldi. But the difficulties of obtaining a sample and the challenges of sequencing it also knit the community together.

Although its genome offers some tantalizing answers, the research team anticipates that further study of the fish’s immunity, respiration, physiology, and more will lead to deep insights into how some vertebrates adapted to life on land, while others remained creatures of the sea.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Less Frequent Cervical Cancer Screening
HPV-vaccinated women may only need one screening every 5 to 10 years with screening starting later in life.
Wednesday, October 19, 2016
A Diversity of Genomes
New DNA from understudied groups reveals modern genetic variation, ancient population shifts.
Friday, September 23, 2016
Biological Barcodes Using CRISPR
Using genome editing tools, researchers are getting closer to understand differentiation of various cell types during development.
Thursday, August 25, 2016
Harvard Licenses Genotyping Platform
Novel approach aids development of drug resistance testing products for HIV.
Tuesday, May 24, 2016
Into Thin Air
Lower oxygen intake could be used to prevent mitochondrial diseases from forming.
Tuesday, March 01, 2016
High Poverty’s Effect on Childhood Leukemia
Patients more likely to suffer early relapses, which can be harder to treat.
Thursday, February 25, 2016
A Cancer’s Surprise Origins, Caught in Action
First demonstration of a melanoma arising from a single cell.
Monday, February 01, 2016
Seeing Hope
Gene therapy/drug combo restores some vision in mice with optic nerve injury.
Wednesday, January 20, 2016
Cell Memory Loss Enables the Production of Stem Cells
Scientists identify a molecular key that helps maintain identity and prevents the conversion of adult cells into iPS cells.
Thursday, December 17, 2015
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Tuesday, November 24, 2015
Exposure to Pesticides In Childhood Linked to Cancer
Young children who are exposed to insecticides inside their homes may be slightly more at risk for developing leukemia or lymphoma during childhood, according to a meta-analysis by Harvard T.H. Chan School of Public Health researchers.
Thursday, September 24, 2015
So Long, Snout
Research helps answer how birds got their beaks.
Thursday, August 20, 2015
Delivering Hope in Ovarian Cancer
Gene therapy blocked chemoresistant tumor growth in mice.
Tuesday, August 11, 2015
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Friday, July 31, 2015
Beyond Average
Researchers have created new platforms to genetically barcode tens of thousands of cells at a time allowing unprecedented detail to be uncovered when studying whole tissue samples.
Tuesday, May 26, 2015
Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Agilent Presents Early Career Professor Award to Dr. Roeland Verhaak
JAX professor recognized for the development and implementation of workflows for the analysis of big-data from transcriptomics to next generation sequencing approaches.
Bacterial Genes Boost Current in Human Cells
Borrowing and tweaking bacterial genes to enhance electrical activity might treat heart, nervous system injury.
Ovarian Cancer Insight
Study showed tumours release cytokines to attract macrophages, which secrete growth factors that in turn promote tumour growth.
Questioning the Safety of Selenium to Combat Cancer
Research indicates the need for change in practice as selenium supplements cannot be recommended for preventing colorectal cancer.
Less Frequent Cervical Cancer Screening
HPV-vaccinated women may only need one screening every 5 to 10 years with screening starting later in life.
Supercomputers Could Improve Cancer Diagnostics
Researchers push the boundaries of cancer research through high-performance computing to map the human immunone.
Leukaemia Cell Movement Gives Clues to Tackling Treatment-Resistant Disease
Researchers at Imperial College London have suggested that the act of moving itself may help the cells to survive, possibly through short-lived interactions with an array of our own cells.
Transgenomic, Precipio Diagnostics Merger
Merger will creates a robust diagnostic platform focused on improving accuracy of cancer diagnoses.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos