Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Protein Complex May Play Role in Preventing Many Forms of Cancer, Study Shows

Published: Tuesday, May 07, 2013
Last Updated: Tuesday, May 07, 2013
Bookmark and Share
Researchers at the Stanford University School of Medicine have identified a group of proteins that are mutated in about one-fifth of all human cancers.

The finding suggests that the proteins, which are members of a protein complex that affects how DNA is packaged in cells, work to suppress the development of tumors in many types of tissues.

The broad reach of the effect of mutations in the complex, called BAF, rivals that of another well-known tumor suppressor called p53. It also furthers a growing notion that these so-called chromatin-regulatory complexes may function as much more than mere cellular housekeepers.

"Although we knew that this complex was likely to play a role in preventing cancer, we didn't realize how extensive it would be," said postdoctoral scholar Cigall Kadoch, PhD. "It's often been thought that these complexes play supportive, maintenance-like roles in the cell. But this is really changing now."

Kadoch shares lead authorship of the study with postdoctoral scholar Diana Hargreaves, PhD. Gerald Crabtree, MD, professor of developmental biology and of pathology, is the senior author of the study, published online May 5 in Nature Genetics.

Chromatin-regulatory complexes work to keep DNA tightly condensed, while also granting temporary access to certain portions for replication or to allow the expression of genes necessary for the growth or function of the cell.

Members of Crabtree's laboratory have been interested in BAF complexes and their function for many years. Recently, they reported in the journal Nature that switching subunits within these complexes can convert human fibroblasts to neurons, which points to their instructive role in development and, possibly, cancer.

"Somehow these chromatin-regulatory complexes manage to compress nearly two yards of DNA into a nucleus about one one-thousandth the size of a pinhead," said Crabtree, who is also a member of the Stanford Cancer Institute and a Howard Hughes Medical Institute investigator. "And they do this without compromising the ability of the DNA to be replicated and selectively expressed in different tissues — all without tangling. In 1994 we reported that complexes of this type were likely to be tumor suppressors. Here we show that they are mutated in nearly 20 percent of all human malignancies thus far examined."

The researchers combined biochemical experiments with the data mining of 44 pre-existing studies to come to their conclusions, which would not have been possible without the advent of highly accurate, genome-wide DNA sequencing of individual human tumor samples. Interestingly, mutations to certain subunits, or particular combinations of mutations in the complex's many subunits, seem to herald the development of specific types of cancer — favoring the development of ovarian versus colon cancer, for example.

The importance of the BAF complex as a tumor suppressor is further emphasized by the fact that, in some cases, a mutation in one subunit is sufficient to initiate cancer development.

"For example," said Kadoch, "a type of mutation called a chromosomal translocation in the gene encoding one of these newly identified subunits, SS18, is known to be the hallmark of a cancer called synovial sarcoma. It is clearly the driving oncogenic event and very often the sole genomic abnormality in these cancers." Kadoch and Crabtree published a study in March in Cell uncovering the mechanism and functional consequences of BAF complex perturbation in synovial sarcoma.

The startling prevalence of mutations in the BAF complex was discovered when Kadoch conducted a series of experiments to determine exactly which proteins in the cell were true subunits of the complex. (The exact protein composition of the large complex varies among cell types and species.) Kadoch used an antibody that recognized one core component to purify intact BAF complexes in various cell types, including embryonic stem cells and skin, nerve and other cells. She then analyzed the various proteins isolated by the technique.

Using this method, Kadoch identified seven proteins previously unknown to be BAF components. She and Hargreaves then turned to previously published studies in which the DNA from a variety of human tumors had been sequenced to determine how frequently any of the members of the complex were mutated.

The results, once the newly discovered members were included, were surprising: 19.6 percent of all human tumors displayed a mutation in at least one of the complex's subunits. In addition, for some types of cancers (such as synovial sarcoma), every individual tumor sample examined had a mutation in a BAF subunit. The results suggest that the BAF complex, when unmutated, plays an important protective role against the development of cancer in many different tissues.

The researchers are now focused on learning how the mutations affect the tumor-suppressing activity of the BAF complex.

"We certainly want to further our understanding of the mechanism behind these findings," said Hargreaves. "Do they promote cancer development by inhibiting the proper progression of the cell cycle? Or perhaps they affect how the complex is positioned on the DNA. We'd like to determine how to recapitulate some of these mutations experimentally to see what types of defects they introduce into the complex."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Mapping Antibody Creation in Humans
Researchers have created the first, detailed map of the body's antibody production, which could suggest new treatment options for immune disorders.
Wednesday, August 03, 2016
New Treatment for Rare Blood Cancers
Drug called midostaurin showed promise in an international clinical trial led by a Stanford physician.
Wednesday, July 06, 2016
Guided Chemotherapy Missiles to Target Cancer Cells
Latching chemotherapy drugs onto proteins that seek out tumors could provide a new way of treating tumors in the brain or with limited blood supply that are hard to reach with traditional chemotherapy.
Tuesday, July 05, 2016
New Imaging Method Reveals Nanoscale Details about DNA
Enhancement to super-resolution microscopy shows orientation of individual molecules, providing a new window into DNA’s structure and dynamics.
Monday, June 20, 2016
Paper Published Based on RNA Game
Video-gamers have co-authored a paper describing a new set of rules for determining the difficulty of designing structures composed of RNA molecules.
Thursday, February 18, 2016
Flexible Gene Expression May Regulate Social Status
Scientists show how the selective expression of genes through epigenetics can regulate the social status of African cichlid fish.
Monday, January 11, 2016
U.S. Needs a New Approach for Governance of Risky Research
The United States needs better oversight of risky biological research to reduce the likelihood of a bioengineered super virus escaping from the lab or being deliberately unleashed, according three Stanford scholars.
Monday, January 04, 2016
Accelerating Protein Evolution
A new tool enables researchers to test millions of mutated proteins in a matter of hours or days, speeding the search for new medicines, industrial enzymes and biosensors.
Monday, December 14, 2015
Gene Linked to Heart Failure
Researchers have identified a previously unknown association between heart function and the narcolepsy-linked orexin receptor pathway, a finding that could provide a promising direction for treatment research.
Wednesday, December 02, 2015
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Thursday, November 26, 2015
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Wednesday, November 25, 2015
Combination Drug Therapy Shrinks Pancreatic Tumors In Mice
Two drugs that affect the structure and function of DNA have been found to block the growth of pancreatic tumor cells in mice, researchers hope the drugs can soon be tested in humans with the disease.
Thursday, September 24, 2015
Key Mechanism in Gene Expression Discovered
RNA polymerase II makes life possible by expressing genes. Now, a team of Stanford biologists, chemists and applied physicists has observed it at work in real time.
Thursday, September 17, 2015
Scientists Home In On Origin Of Human, Chimpanzee Facial Differences
A study of species-specific regulation of gene expression in chimps and humans has identified regions important in human facial development and variation.
Monday, September 14, 2015
Identifying Defective Heart Genes
A new technique could eventually enable doctors to diagnose genetic heart diseases by rapidly scanning more than 85 genes known to cause cardiac anomalies.
Thursday, August 13, 2015
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Tissue Damage Is Key for Cell Reprogramming
Researchers have shown tissue damage is important for cells to return to an embryonic state for cell reprogramming.
Improving Drug Production with Computer Model
A model has been developed that can be used to improve and accelerate the production of biotherapeutics, cancer drugs, and vaccines.
New Form of Autism Found
An international team of researchers have identified a new form of syndromic autism.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
Secret Phenotypes: Disease Devils in Invisible Details
Algorithmic deep phenotyping exposes masses of hidden traits and possible subtle genetic connections relevant to unseen influences on disease.
Hunting the Missing Link Between Genetics and the Environment
The International Phenome Centre Network (IPCN) works to transform healthcare through phenomics - the dynamic interactions between our genes and our environment.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!