Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Two MIT Professors Named Howard Hughes Medical Institute Investigators

Published: Friday, May 10, 2013
Last Updated: Friday, May 10, 2013
Bookmark and Share
Peter Reddien and Aviv Regev are among 27 top biomedical scientists selected nationwide.

Two members of the MIT faculty — Peter Reddien and Aviv Regev — have been named Howard Hughes Medical Institute (HHMI) investigators, bringing the total number of MIT professors who hold the distinction to 18.

Selected for their scientific excellence, HHMI investigators remain at their home institutions, but HHMI pays their salaries and funds much of their research. This gives the investigators freedom to explore, change direction in their research and see their ideas through to fruition — even if that process takes many years. Reddien and Regev will begin their five-year HHMI appointments in September.

“HHMI has a very simple mission,” HHMI President Robert Tjian said in announcing the new investigators. “We find the best original-thinking scientists and give them the resources to follow their instincts in discovering basic biological processes that may one day lead to better medical outcomes. This is a very talented group of scientists. And while we cannot predict where their research will take them, we’re eager to help them move science forward.”

Reddien and Regev were among 27 biomedical scientists selected as new HHMI investigators from 1,155 applicants. HHMI currently supports approximately 330 investigators throughout the country, including 15 Nobel laureates and more than 150 members of the National Academy of Sciences.

Peter Reddien

Peter Reddien is an associate professor of biology and associate head of MIT’s Department of Biology. He is also a member of the Whitehead Institute for Biomedical Research, an associate member of the Broad Institute and an HHMI Early Career Scientist.

Reddien’s work centers on the study of planaria, flatworms that have regenerative abilities. His lab seeks to identify and understand the molecular and cellular mechanisms that control these worms’ regeneration. His group discovered that planaria are equipped with stem cells that have the capacity to become any type of cell in their bodies — and that these cells create new tissue during regeneration.

Reddien continues to investigate the sources of planaria’s regenerative powers. His insights may lead to new understanding of the genes and pathways that control tissue repair and stem cells in humans. His work may also help reveal the limits of the human body to regenerate lost or injured tissue.

Aviv Regev


Aviv Regev is an associate professor of biology at MIT. She is also a core faculty member and director of the Klarman Cell Observatory at the Broad Institute and an HHMI Early Career Scientist.

Regev uses computational and experimental approaches to investigate how molecular networks that regulate gene activity respond to genetic and environmental changes — in the short term and over millennia. She has developed, among other things, techniques to analyze how yeast genes and regulatory networks have changed over 300 million years and how circuits change as immune cells respond to pathogens.

Additionally, her lab is using advanced experimental techniques, such as inserting genes into cells with silicon nanowires, to chart the molecular circuitry of T cells. Her algorithms are used in labs around the world to analyze gene expression data and other information.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Mapping Regulatory Elements
Systematically searching DNA for regulatory elements indicates limits of previous thinking
Wednesday, February 03, 2016
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
Wednesday, February 03, 2016
Supply Chain
Chemists discover how a single enzyme maintains a cell’s pool of DNA building blocks.
Wednesday, January 13, 2016
How Cancer Cells Spread
Study offers new targets for drugs that may prevent cancer from spreading.
Thursday, December 17, 2015
Scaling Up Synthetic-Biology Innovation
MIT professor’s startup makes synthesizing genes many times more cost effective.
Monday, December 14, 2015
Delivering microRNAs for Cancer Treatment
Scientists exploit gene therapy to shrink tumors in mice with an aggressive form of breast cancer.
Wednesday, December 09, 2015
CRISPR-Cas9 Genome Editing Hurdle Overcome
Team re-engineers system to dramatically cut down on editing errors; improvements advance future human applications.
Thursday, December 03, 2015
Drug-Resistance Mechanism in Tumor Cells Unravelled
Targeting the RNA-binding protein that promotes resistance could lead to better cancer therapies.
Friday, October 23, 2015
Quantum Physics Meets Genetic Engineering
Researchers use engineered viruses to provide quantum-based enhancement of energy transport.
Friday, October 16, 2015
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Friday, September 25, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Thursday, August 27, 2015
A Metabolic Master Switch Underlying Human Obesity
Researchers find pathway that controls metabolism by prompting fat cells to store or burn fat.
Friday, August 21, 2015
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Friday, July 31, 2015
Scientific News
Genetic Cause of Rare Allergy
Institute has identified a genetic mutation responsible for a rare form of inherited hives induced by vibratory urticaria.
Mitochondria Shown to Trigger Cell Ageing
An international team of scientists has for the first time shown that mitochondria, the batteries of the cells, are essential for ageing.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Validating the Accuracy of CRISPR-Cas9
IBS Researchers create multiplex Digenome-seq to find errors in CRISPR-Cas9 processes.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
How to Unlock Inaccessible Genes
An international team of biologists has discovered how specialized enzymes remodel the extremely condensed genetic material in the nucleus of cells in order to control which genes can be used.
Viral Gene Editing System Corrects Genetic Liver Disease
Penn study has implications for developing safe therapies for an array of rare diseases via new gene cut-and-paste methods.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!