Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

CU Study Suggests Link Between Tumor Suppressors and Starvation Survival

Published: Tuesday, May 14, 2013
Last Updated: Tuesday, May 14, 2013
Bookmark and Share
A particular tumor suppressor gene that fights cancer cells does more than clamp down on unabated cell division, it also can help make cells more fit by allowing them to fend off stress.

CU-Boulder Professor Min Han said the research team was interested in how a common tumor suppressor gene known as Retinoblastoma 1, or Rb, behaved under conditions of starvation. The question is important, said Han, because it may help researchers understand why many cancer cells are more susceptible to starvation or fasting than ordinary cells.

Han and his team studied a popular lab organism called C. elegans, a translucent nematode smaller than an eyelash. Many of the C. elegans genes have similar, corresponding human genes called homologs, and almost all cellular mechanisms found in the nematodes also are found in mammals, including humans, he said.  The team charted changes in the physiology of newly hatched C. elegans in the absence of food to look at the corresponding stress response.

“We found the tumor suppressor Rb is a critical regulator of the starvation response,” said Han, who also is a Howard Hughes Medical Investigator. “Rb is known for doing more than just suppressing cell division associated with cancer -- it carries out a host of other cellular tasks including regulating development.  The new findings by our group and research by other groups suggest organisms survive longer when they encounter starvation by regulating the expression of a large number of genes.”

A paper on the subject was published online May 9 in Current Biology, a publication of Cell Press. The co-authors on the study, Mingxue Cui, Max Cohen and Cindy Teng, are all researchers associated with both CU-Boulder and HHMI. The study was funded by HHMI and the National Institutes of Health.

As part of the study, the researchers monitored the two- to three-week survival time of hundreds of C. elegans hatchlings in an environment with no food, which caused immediate “developmental arrest,” said Han, a professor in CU-Boulder’s molecular, cellular and developmental biology department. “The survival time of the young nematodes is dramatically shorter when the Rb gene is mutated, which causes changes in the activities of multiple cell signaling pathways.”

The study suggests that Rb plays a critical role in maintaining a starvation-induced “transcriptome,” which is the transcription of DNA to corresponding bits of RNA that allow researchers to pinpoint when and where each gene is turned on or off in the cells, he said. Under starved conditions, for example, Rb represses some responses induced by other physical stressors like pathogens and toxins.

Han said the Rb gene is mutated in a large percentage of human cancers. Hundreds of mutations in the RB gene have been identified in people with retinoblastoma, a rare type of eye cancer that usually strikes young children.

“Altogether, these findings identify Rb as a critical regulator of the starvation response and suggest a link between functions of tumor suppressors and starvation survival,” the team wrote in Current Biology. “These results may provide mechanistic insights into why cancer cells are often hypersensitive to starvation treatment.”

There are about 330 HHMI Investigators in the nation, including 15 Nobel laureates and 157 members of the National Academy of Sciences.  Other HHMI Investigators at CU-Boulder include Natalie Ahn, Kristi Anseth, Tom Cech (also a Nobel laureate) and Roy Parker. In addition, HHMI Investigator Lee Niswander is at the University of Colorado Denver School of Medicine.

Founded in 1953 by aviator and industrialist Howard R. Hughes, HHMI is a nonprofit medical research organization that ranks as one of the nation’s largest philanthropies.  In 2012 HHMI spent $800 million for research and $119 million for science education.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Telomere Replenishment in Real Time
Researchers have visualised the process of telomere attachment to chromosomes through single-molecule imaging.
Tuesday, August 23, 2016
Mining Whole Exome Data to Improve Cancer Therapies
New tool interprets the raw data of whole exome tumor sequencing and then matches the cancer’s unique genetics to FDA-approved targeted treatments.
Thursday, March 31, 2016
Next-Gen Melanoma Drug Excels in Lab Tests
Anti-cancer activity was reported in 10 out of 11 patient tumor samples grown in mice and treated with the experimental drug TAK-733.
Thursday, November 13, 2014
Serendipity Points to New Potential Target and Therapy for Melanoma
A University of Colorado Cancer Center describes a new target and potential treatment for melanoma, the most dangerous form of skin cancer.
Friday, December 21, 2012
Scientific News
How it Works: Advanced Data Analysis Using Visualization
Visualisation of data can be used to help molecular biologists tackle the vast datasets their experiments create.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Influential Cancer Researcher Receives Agilent Thought Leader Award
Biologist Scott Lowe receives award in recognition for his contributions to cancer biology.
Molecular Origins of Dust Mite Allergy Discovered
Scientists have identified molecules of house dust mites that are targeted by the immune system of children, developing allergic rhinitis and asthma.
Gene-Editing Cures Genetic Blood Disorder in Mice
New technology may offer minimally invasive treatment for genetic disorders of the blood.
Epigenetics and Neural Cell Death
Researchers demonstrate how deregulation of an epigenetic mechanism active in early neurogenesis phases triggers neural cell death.
ALS Study Reveals Role of RNA-Binding Proteins
The findings are a significant step forward in validating RNA-based therapy as a treatment for ALS.
New Compound Shows Promise in Treating Multiple Human Cancers
The research presents a new way to efficiently kill these cancerous cells and holds promise for the treatment of all cancers.
Tumor Markers Reveal Lethality Of Bladder Cancers
Researchers found that detection of certain tumor cells in early stage cancers helps identify high-risk cancers.
Lab-on-a-Chip to Help Detect Cancer
In this podcast, we speak to Gustavo Stolovitsky to learn about his career and the work he is doing at IBM Research.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos