Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Linked to Migraine and Sleep Disorder

Published: Wednesday, May 15, 2013
Last Updated: Tuesday, May 14, 2013
Bookmark and Share
Research team took a closer look at the potential role of CKId in migraine.

Researchers linked an abnormal gene to both a common type of migraine and a rare sleep disorder. The finding offers insight into the mechanisms of migraines and provides a new avenue for exploring treatment options.

By some estimates, more than 1 in 10 people experience intense headaches, often accompanied by pulsing or throbbing pain, known as migraines.

About a third of migraine sufferers also experience visual or sensory disturbances known as migraine aura shortly before the headache begins.

Although the causes of migraine are poorly understood, the condition is known to run in families, and so genes likely play a role.

In earlier NIH-funded research, Dr. Louis J. Ptácek and his colleagues identified the gene responsible for a rare sleep disorder in a Vermont family. This family also tended to suffer from migraine with aura, which is how they originally came to medical attention.

The sleep disorder, called familial advanced sleep phase syndrome, drives people to be “early birds”-going to sleep and waking up unusually early each day.

Nearly a decade ago, Ptácek’s team showed that affected family members had mutations in an enzyme called casein kinase Iδ (CKIδ).

The enzyme plays a key role in sleep-wake cycles, or circadian rhythms, of species ranging from fruit flies to mice to people.

In the new study, a multicenter research team headed by Ptácek, who is at the University of California, San Francisco, took a closer look at the potential role of CKIδ in migraine.

Their research was funded in part by NIH’s National Heart, Lung and Blood Institute (NHLBI), National Institute of Neurological Disorders and Stroke (NINDS) and National Institute of General Medical Sciences (NIGMS). Results were published in Science Translational Medicine on May 1, 2013.

The researchers first analyzed the CKIδ gene in 14 members of the original family. Five who had identical mutations in the CKIδ gene also met the diagnostic criteria for migraine.

The scientists then sequenced the gene in blood samples from 70 additional families with the rare sleep disorder. One family had a slightly different mutation in the CKIδ gene.

In this family, too, all 5 members with CKIδ mutations had migraine, aura without migraine or probable migraine. In further analysis, the researchers showed that the CKIδ mutations in both families reduce the enzyme’s activity.

To investigate the gene’s effects on the body, the researchers created transgenic mice with the same CKIδ mutation found in the original family.

Several tests suggested that the mutant mice had many characteristics akin to human migraines. When treated with a migraine-triggering compound, the mice showed increased sensitivity to pain.

Imaging and electrophysiological studies showed waves of brain activity and brain artery dilation believed to be similar to what occurs during migraine auras in humans.

Studies by other groups have linked unusual forms of migraine to proteins involved in transporting ions across membranes. CKIδ codes for a different kind of protein that affects many biological pathways, which might now be studied as potential contributors to migraines.

“This is the first gene in which mutations have been shown to cause a very typical form of migraine,” says Ptácek. “It’s our initial glimpse into a black box that we don’t yet understand.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein-Folding Gene Helps Heal Wounds
Researchers identified a protein that dramatically accelerates wound healing in animal models.
Wednesday, November 23, 2016
NIH Researchers Unveil New Wound-Healing Role for Protein-Folding Gene in Mice
The study found that topical treatment of an Hsp60-containing gel dramatically accelerates wound closure in a diabetic mouse model.
Friday, October 28, 2016
Gene Editing Corrects Sickle Cell Mutation
Researchers demonstrate a potential pathway to developing gene-editing treatments for sickle cell disease.
Wednesday, October 26, 2016
NIH Scientists Uncover Genetic Explanation for Frustrating Syndrome
Researchers at NIH have suggested that the multiple alpha tryptase gene copies might underlie health issues that affect a substantial number of people.
Tuesday, October 18, 2016
NIH Commits $6.7 M to Advance DNA, RNA Sequencing Technology
"Can you believe they make DNA sequencers the size of staplers?" asked Meni Wanunu, Ph.D. "Ideas that were crazy twenty years ago are now happening!"
Friday, October 07, 2016
“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
Monday, September 26, 2016
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Wednesday, September 21, 2016
Catalogue of Human Genetic Diversity Expands
The largest data set of human exomes to date has been assembled to better study seqence variants and their consequences.
Wednesday, September 07, 2016
$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Public Support for National Study
Survey shows the majority of respondents support or show willingness for national precision medicine study.
Thursday, August 18, 2016
Schizophrenia, Autism Share Genetic Causes
Monkey brain developmental atlas pinpoints when, where genes activate.
Tuesday, August 16, 2016
How Breast Cancers Resist Chemotherapy
Researchers discovered an unexpected way that breast cancers cells with mutant BRCA1 or BRCA2 genes acquire drug resistance and evade chemotherapies.
Wednesday, August 10, 2016
Mutations Linked to Immunotherapy Resistance
Researchers uncover mutations in tumors of three patients with advanced melanoma that allowed the tumors to become resistant to the immune checkpoint inhibitor pembrolizumab (Keytruda®).
Tuesday, August 09, 2016
Genetic Cause of Rare Pediatric Neuropathy Identified
NIH mouse study identifies the mechanism responsible for a rare form of pediatric neuropathy.
Thursday, August 04, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Secret Phenotypes: Disease Devils in Invisible Details
Algorithmic deep phenotyping exposes masses of hidden traits and possible subtle genetic connections relevant to unseen influences on disease.
Cracking the Code of a Deadly Virus
Researchers have exploited weaknesses in VEEV's genetic code, creating a far less deadly variant.
Hunting the Missing Link Between Genetics and the Environment
The International Phenome Centre Network (IPCN) works to transform healthcare through phenomics - the dynamic interactions between our genes and our environment.
Repurposing Genes for Brain Development
Mammalian bone gene may be repurposed to promote cognition in humans.
Enhancing CRISPR to Explore Further
Researchers have developed sOPTiKO, a more efficient and controllable CRISPR genome editing platform.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!