Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Researchers Identify Four New Genetic Risk Factors for Testicular Cancer

Published: Wednesday, May 15, 2013
Last Updated: Wednesday, May 15, 2013
Bookmark and Share
Large, first-of-its-kind study finds genomic regions associated with higher risk.

A new study looking at the genomes of more than 13,000 men identified four new genetic variants associated with an increased risk of testicular cancer, the most commonly diagnosed type in young men today. The findings from this first-of-its-kind meta-analysis were reported online May 12 in Nature Genetics by researchers at the Perelman School of Medicine at the University of Pennsylvania.

The discovery of these genetic variations—chromosomal “typos,” so to speak—could ultimately help researchers better understand which men are at high risk and allow for early detection or prevention of the disease.

“As we continue to cast a wider net, we identify additional genetic risk factors, which point to new mechanisms for disease,” said Katherine L. Nathanson, MD, associate professor in the division of Translational  Medicine and Human Genetics within the department of Medicine. “Certain chromosomal regions, what we call loci, are tied into testicular cancer susceptibility, and represent a promising path to stratifying patients into risk groups—for a disease we know is highly heritable.”

Tapping into three genome-wide association studies (GWAS), the researchers, including Peter A. Kanetsky, PhD, MPH, an associate professor in the department of Biostatistics and Epidemiology, analyzed 931 affected individuals and 1,975 controls and confirmed the results in an additional 3,211 men with cancer and 7,591 controls. The meta-analysis revealed that testicular germ cell tumor (TGCT) risk was significantly associated with markers at four loci—4q22, 7q22, 16q22.3, and 17q22, none of which have been identified in other cancers. Additionally, these loci pose a higher risk than the vast majority of other loci identified for some common cancers, such as breast and prostate.

This brings the number of genomic regions associated with testicular cancer up to 17—including eight new ones reported in another study in this issue of Nature Genetics.

Testicular cancer is relatively rare; however, incidence rates have doubled in the past 40 years. It is also highly heritable. If a man has a father or son with testicular cancer, he has a four-to six-fold higher risk of developing it compared to a man with no family history. That increases to an eight-to 10-fold higher risk if the man has a brother with testicular cancer.

Given this, researchers continue to investigate genetic variants and their association with cancer.

In 2009, Dr. Nathanson and colleagues uncovered variation around two genes—KITLG and SPRY4—found to be associated with an increased risk of testicular cancer. The two variants were the first striking genetic risk factors found for this disease at the time. Since then, several more variants have been discovered, but only through single GWAS studies.

“This analysis is the first to bring several groups of data together to identify loci associated with disease,” said Dr. Nathanson, “and represent the power of combining multiple GWAS to better identify genetic risk factors that failed to reach genome-wide significance in single studies.”

The team also explains how the variants associated with increased cancer risk are the same genes associated with chromosomal segregation. The variants are also found near genes important for germ cell development. These data strongly supports the notion that testicular cancer is a disorder of germ cell development and maturation.

“TGCT is unique in that many of the loci are very good biological candidates due to their role in male germ cell development,” said Dr. Nathanson. “Disruptions in male germ cell development lead to tumorigenesis, and presumably also to infertility.  These conditions have been linked before, epidemiologically, and genes implicated in both of our prior studies, but this study reinforces that connection.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

First Atlas of Body Clock Gene Expression in Mammals Informs Timing of Drug Delivery
Penn Medicine study has implications for 100 top-selling US drugs, half of which target daily-oscillating genes.
Thursday, October 30, 2014
Ovarian Cancer Oncogene Found in "Junk DNA"
The study is published online in this week in Cancer Cell.
Wednesday, September 10, 2014
T-Cell Therapy Eradicates an Aggressive Leukemia in Two Children
CHOP/Penn Medicine oncology team reports complete remission in pediatric ALL patients.
Tuesday, March 26, 2013
Changes to DNA On-Off Switches Affect Cells' Ability to Repair Breaks
Many proteins are involved in everyday DNA repair, but if they are mutated, the repair system breaks down and cancer can occur.
Wednesday, February 06, 2013
Penn Study Details Dimmer Switch for Regulating Cell's Read of DNA Code
Findings have implications for cancer and neurological treatments.
Wednesday, January 09, 2013
Penn Study on Silencing of Tumor Suppressor Gene Suggests New Target for Lymphoma
Professors from the Perelman School of Medicine at the University of Pennsylvania, and their colleagues, found that a cancer-causing fusion protein works by silencing the tumor suppressor gene IL-2R common gamma-chain (IL-2R?). The results suggest news targets for lymphoma and other types of cancer.
Monday, December 12, 2011
Scientific News
Revolutionary Technologies Developed to Improve Outcomes for Lung Cancer Patients
Breath test to detect lung cancer brings oxygen directly to the wound.
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
New Gene Map Reveals Cancer’s Achilles’ Heel
Team of researchers switches off almost 18,000 genes
New Discovery Sheds Light on Disease Risk
Gaps between genes interact to influence the risk of acquiring disease.
Mathematical Model Helps Show How Zebrafish Get Their Stripes
The iconic yellow and blue stripes of zebrafish form dynamically as young fish develop and grow. A mathematical model developed by Brown University researchers helps to show how pigment cells interact to form the pattern.
Epigenome Influenced by Habitat and Lifestyle
Study on Pygmy hunter-gatherer populations and Bantu farmers in Central Africa shows that habitat and lifestyle can impact the epigenome.
Shining Light on Microbial Growth and Death Inside our Guts
Precise measurement of microbial populations in gastrointestinal tracts could be key to identifying novel therapies.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos