Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Taming Suspect Gene Reverses Schizophrenia-like Abnormalities in Mice

Published: Thursday, May 23, 2013
Last Updated: Thursday, May 23, 2013
Bookmark and Share
NIH-funded study raises hope for recovery of some adult patients, despite early damage.

Scientists have reversed behavioral and brain abnormalities in adult mice that resemble some features of schizophrenia by restoring normal expression to a suspect gene that is over-expressed in humans with the illness. Targeting expression of the gene Neuregulin1, which makes a protein important for brain development, may hold promise for treating at least some patients with the brain disorder, say researchers funded by the National Institutes of Health.

Like patients with schizophrenia, adult mice biogenetically-engineered to have higher Neuregulin 1 levels showed reduced activity of the brain messenger chemicals glutamate and GABA. The mice also showed behaviors related to aspects of the human illness. For example, they interacted less with other animals and faltered on thinking tasks.

“The deficits reversed when we normalized Neuregulin 1 expression in animals that had been symptomatic, suggesting that damage which occurred during development is recoverable in adulthood,” explained Lin Mei, M.D., Ph.D.  , of the Medical College of Georgia at Georgia Regents University, a grantee of NIH’s National Institute of Mental Health (NIMH).

Mei, Dong-Min Yin, Ph.D., Yong-Jun Chen, Ph.D., and colleagues report on their findings May 22, 2013 in the journal Neuron.

“While mouse models can’t really do full justice to a complex brain disorder that impairs our most uniquely human characteristics, this study demonstrates the potential of dissecting the workings of intermediate components of disorders in animals to discover underlying mechanisms and new treatment targets,” said NIMH Director Thomas R. Insel, M.D. “Hopeful news about how an illness process that originates early in development might be reversible in adulthood illustrates the promise of such translational research.”

Schizophrenia is thought to stem from early damage to the developing fetal brain, traceable to a complex mix of genetic and environmental causes. Although genes identified to date account for only a small fraction of cases, evidence has implicated variation in the Neuregulin 1 gene. For example, postmortem studies have found that it is overexpressed in the brain's thinking hub, or prefrontal cortex, of some people who had schizophrenia. It codes for a chemical messenger that plays a pivotal role in communication between brain cells, as well as in brain development.

Prior to the new study, it was unclear whether damage caused by abnormal prenatal Neuregulin 1 expression might be reversible in adulthood. Nor was it known whether any resulting behavioral and brain deficits must be sustained by continued errant Neuregulin 1 expression in adulthood.
To find out, the researchers engineered laboratory mice to mimic some components of the human illness by over-expressing the Neuregulin 1 gene in the forebrain, comparable to the prefrontal cortex in humans. Increasing Neuregulin 1 expression in adult animals was sufficient to produce behavioral features, such as hyperactivity, social and cognitive impairments, and to hobble neural communications via the messenger chemicals glutamate and GABA.

Unexpectedly, the abnormalities disappeared when the researchers experimentally switched off Neuregulin 1 overexpression in the adult animals. Treatment with clozapine, an antipsychotic medication, also reversed the behavioral abnormalities. The researchers traced the glutamate impairment to an errant enzyme called LIMK1, triggered by the overexpressed Neuregulin 1 — a previously unknown potential pathological mechanism in schizophrenia.

The study results suggest that even if their illness stems from disruptions early in brain development, adult patients whose schizophrenia is rooted in faulty Neuregulin 1 activity might experience a reduction in some of the symptoms following treatments that target overexpression of the protein, say the researchers.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
International Study Reveals New Genetic Clues to AMD
NIH-funded research provides framework for future studies of AMD biology, therapy.
Tuesday, December 22, 2015
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
Tuesday, December 01, 2015
Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Friday, November 13, 2015
NIH Researchers Link Single Gene Variation to Obesity
Variation in the BDNF gene may affect brain’s regulation of appetite, study suggests.
Saturday, October 31, 2015
Researchers Identify Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Saturday, October 31, 2015
Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Friday, October 23, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Gene Therapy Staves Off Blindness from Retinitis Pigmentosa in Canine Model
NIH-funded study suggests therapeutic window may extend to later-stage disease.
Tuesday, October 20, 2015
Scientific News
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH has announced that decipher the genome of the blacklegged tick which could lead to new tick control methods.
"Dark Side" of the Transcriptome
New approach to quantifying gene "read-outs" reveals important variations in protein synthesis and has implications for understanding neurodegenerative diseases.
Individuals' Medical Histories Predicted by their Noncoding Genomes
Researchers have found that analyzing mutations in regions of the genome that control genes can predict medical conditions such as hypertension, narcolepsy and heart problems.
New Source of Mutations in Cancer
Recently, a new mutation signature found in cancer cells was suspected to have been created by a family of enzymes found in human cells called the APOBEC3 family.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Biosensors on Demand
New strategy results in custom "designer proteins" for sensing a variety of molecules.
Unique Mechanism for a High-Risk Leukemia
Researchers uncovered the aberrant mechanism underlying a notoriously treatment-resistant acute lymphoblastic leukemia subtype; findings offer lessons for understanding all cancers.
Genetically Mapping the Most Lethal E.Coli Strains
New approach could lead to fewer deaths, and new treatments.
Pumpjack" Mechanism for Splitting and Copying DNA
High-resolution structural details of cells' DNA-replicating proteins offer new insight into how these molecular machines function
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!