Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Common Childhood Asthma Not Rooted in Allergens, Inflammation

Published: Friday, May 24, 2013
Last Updated: Friday, May 24, 2013
Bookmark and Share
Discovery of origins of a unique form of asthma may lead to a precision medicine approach to treatment.

Little is known about why asthma develops, how it constricts the airway or why response to treatments varies between patients. Now, a team of researchers at Weill Cornell Medical College, Columbia University Medical Center and SUNY Downstate Medical Center has revealed the roots of a common type of childhood asthma, showing that it is very different from other asthma cases.

Their report, in Science Translational Medicine, reveals that an over-active gene linked in 20 to 30 percent of patients with childhood asthma interrupts the synthesis of lipid molecules (known as sphingolipids) that are part of cell membranes found all over the body.

Although the researchers do not yet understand why asthma results from reduced production of sphingolipids, their experiments clearly show a link between loss of these lipids and bronchial hyperreactivity, a key feature of asthma.

What makes this pathway unique, investigators say, is that it is not related to allergens and, the investigators discovered, has nothing to do with inflammation.

“Usually asthma is thought to be an inflammatory disease or a reaction to an allergen. Our model shows that asthma can result from having too little of a type of sphingolipids. This is a completely new pathway for asthma pathogenesis,” says the study’s senior author, Dr. Stefan Worgall, chief of the Pediatric Pulmonology, Allergy and Immunology Division at NewYork-Presbyterian Hospital/Weill Cornell Medical Center.

This is very good news, he adds. “Our findings are not only valuable in understanding the pathogenesis of this complex disease, but provide a basis to develop novel therapies, especially asthma agents based on a patient’s genotype,” says Dr. Worgall, who is also a distinguished professor of pediatric pulmonology, professor of pediatrics and associate professor of genetic medicine at Weill Cornell Medical College.

Precision Medicine for Asthma

Asthma is a significant health problem affecting about 7 million children in the United States. Nearly 10 percent of American children 0–17 years of age have asthma, making it the most common serious respiratory childhood disease. Its prevalence is even higher among inner-city children, says Dr. Worgall. Besides causing suffering, disability and alarm, the economic toll is significant, he says: In 2009, asthma caused 640,000 emergency room visits and 157,000 hospitalizations, plus 10.5 million missed school days.

“Yet while it has become increasingly evident that asthma takes several forms, treatment of the disorder is uniform,” he says. “Most therapies are designed to reduce inflammation, but they do not help all sufferers.”

The notion that asthma has different forms gained ground after several genome-wide association studies (GWAS) found variation in a gene, later identified as ORMDL3, in to up to 30 percent of asthma cases. In 2007, over-production of the gene’s protein was connected to childhood asthma, and this gene has been the most consistent genetic factor identified so far for asthma.

In 2010, a study in yeast found that ORMDL3 protein inhibits sphingolipid de-novo synthesis.

This finding prompted the researchers to investigate whether sphingolipid production is connected to asthma. Their study shows that this is indeed true in mouse models of the disease. Using mouse models, the researchers found that inhibition of an enzyme, serine palmitoyl-CoA transferase (SPT), which is critical to sphingolipid synthesis, produced asthma in mice and in human airways, as it did in mice that had a genetic defect in SPT.

The airway hyperactivity seen in the mice was not linked to increased inflammation, and the scientists saw a decreased response of the lung and airways to magnesium — which is often used in emergency rooms to relieve chest tightness of patients with asthma attacks.

“In our mouse models, we found that magnesium was not effective at inducing airway relaxation, suggesting the same would be true for humans whose asthma is linked to ORMDL3,” says the study’s first author, Dr. Tilla S. Worgall, assistant professor in the Department of Pathology and Cell Biology and a member of the Institute of Human Nutrition at Columbia University Medical Center. “The association of decreased de novo sphingolipid synthesis with alterations in cellular magnesium homeostasis provides a clue into the mechanism of asthma. Therefore, therapies that circumvent the effect of the ORMDL3 genotype may be effective treatments for asthma sufferers. We are now working towards developing these new therapies.”

The paper is titled, “Impaired sphingolipid synthesis in the respiratory tract induces airway hyperreactivity.” Additional authors include Arul Veerappan, Biin Sung, Evan Weiner, Rheeshma Bholah and Dr. Randy B. Silverfrom Weill Cornell Medical College; Benjamin I. Kimfrom Columbia University Medical Center; and Dr. Xian-Cheng Jiang from SUNY Downstate Medical Center (formally known as The State University of New York at Brooklyn).


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Tuesday, June 28, 2016
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Tuesday, June 28, 2016
New Neurodevelopmental Syndrome Identified
Study pinpoints underlying genetic mutations, raising hopes for targeted therapies.
Friday, April 22, 2016
New Link Between Obesity and Diabetes Found
Targeting a single enzyme that raises both sugar and insulin levels in the obese could prevent and treat diabetes.
Monday, November 25, 2013
Is There a Role for Vitamins in Cancer Prevention?
According to recent national surveys, approximately 40 percent of U.S. adults take multivitamins/multiminerals.
Monday, August 12, 2013
Study Reveals Genes That Drive Brain Cancer
About 15 percent of glioblastoma patients could receive personalized treatment with drugs currently used in other cancers.
Tuesday, August 06, 2013
Key Molecular Pathways Leading to Alzheimer’s Identified
Research approach highlights potential therapeutic targets.
Thursday, July 25, 2013
New Genetic Cause of Pulmonary Hypertension Identified
Study finds druggable target for rare fatal lung disease.
Thursday, July 25, 2013
Mutation Linked to Congenital Urinary Tract Defects
Findings point to new diagnostic category.
Thursday, July 18, 2013
Mouse Study Suggests Lead May Trigger Schizophrenia
Behavioral and MRI study in mice points to a synergistic relationship between lead exposure and schizophrenia gene.
Monday, June 10, 2013
Many Birth Defects in Heart Caused by Spontaneous Mutations
A study has found that at least 10 percent of cases stem from genetic mutations that occur spontaneously early in development.
Thursday, May 30, 2013
Looking for the Telltale Gene
A new genetic test allows parents to peer into their unborn children's medical future.
Friday, May 24, 2013
Hundreds of Alterations and Potential Drug Targets to Starve Tumors Identified
A massive study analyzing gene expression data from 22 tumor types has identified multiple metabolic expression changes associated with cancer.
Monday, April 22, 2013
New Gene Associated with Almost Doubled Alzheimer’s Risk in African-Americans
ABCA7, a minor gene variant in whites, is major player in African-Americans.
Wednesday, April 10, 2013
Schizophrenia Gene Networks Found, and a Link to Autism
Although schizophrenia is highly genetic in origin, the genes involved in the disorder have been difficult to identify.
Thursday, November 15, 2012
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Personality Traits, Psychiatric Disorders Linked to Specific Genomic Locations
Researchers have unearthed genetic correlations between personality traits and psychiatric disorders.
Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Diabetes Missing Link Discovered
Researchers from the University of Auckland have shown that beta catenin plays a vital role in the control of insulin release from the pancreas.
Study Reveals New Role for Hippo Pathway in Suppressing Cancer Immunity
Hippo pathway signaling regulates organ size by moderating cell growth, apoptosis and stem cell renewal, but dysregulation contributes to cancer development.
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
Gene Editing Yields Tomatoes That Ripen Weeks Earlier
Research team develop method to make tomato plants flower and ripen fruit two weeks faster than current growth rates.
Exploring the Genome of the River Blindness Parasite
Researchers have decoded the genome of the parasite that causes the skin and eye infection known as river blindness.
Gene Therapy Maintains Clotting Factor for Hemophilia Patients
Following a single gene therapy dose, the highest levels of an essential blood clotting factor IX were observed in hemophilia B patients.
Unexpected Role for Epigenetic Enzymes in Cancer
Researchers use epigenetics to identify the role of an enzyme family as regulators of genetic message interpretation in yeast.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!