Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Fungal Findings

Published: Monday, June 10, 2013
Last Updated: Monday, June 10, 2013
Bookmark and Share
NIH team used genomic approach to gain a better understanding of the fungi in their new study.

A genomic survey of the fungi living on our skin provides a framework for understanding how these microbes contribute to skin health and disease.

Complex communities of microbes live on the surface of our bodies. These fungi, bacteria and viruses are collectively known as the skin microbiome.

A team from NIH’s National Human Genome Research Institute (NHGRI) and National Cancer Institute (NCI) previously used genomic techniques to study skin bacteria.

They found diverse bacterial communities that varied between people and by skin site. In their new study, the team used a similar genomic approach to gain a better understanding of the fungi that live on our skin.

Fungi include molds, mushrooms, and the yeast that are used to ferment bread and beer. These microbes have been associated with many skin diseases and conditions, including athlete’s foot, eczema, dandruff and toenail infections.

Fungal skin infections affect an estimated 29 million people nationwide. But fungi can be slow and difficult to grow in laboratories, making fungal infections hard to identify and treat.

As described online in Nature on May 22, 2013, the scientists collected samples at 14 body sites from 10 healthy adults. They focused on a fragment of DNA shared by all fungi-the intervening internal transcribed spacer 1 (ITS1) of ribosomal RNA-that could be used to classify fungi at the genus level with greater than 97% accuracy.

By generating more than 5 million ITS1 sequences from the samples, the team was able to identify more than 80 genus-level fungal types living on human skin. In contrast, traditional culturing methods could identify only 18 types.

Ascomycetes and Basidiomycetes were found at all the skin sites. Fungi of the genus Malassezia were the predominant type on 11 of the 14 sites, including behind the ears, in nostrils, on the back, and on the arms.

The team found that heels, which don’t show extensive bacterial diversity, were the most complex site for fungi, with about 80 types represented.

Toe webs, with about 60 types, and toenails, with 40, had the next highest levels of fungal diversity. Hands and arms, which harbor a great diversity of bacteria, had relatively few types of fungi.

Fungal communities on the core body were quite stable over time, with little change when tested up to 3 months apart. In contrast, fungi on the feet altered considerably over 3 months, perhaps reflecting more environmental exposure.

“The fungal communities on the human body are complex and site-specific,” says co-senior author Dr. Heidi Kong of NCI. “By gaining a more complete awareness of the fungal and bacterial ecosystems, we can better address associated skin diseases, including fungal infections, which can be related to cancer treatments.”

“The data from our study gives us a baseline about normal individuals that we never had before,” says co-senior author Dr. Julie Segre of NHGRI. “The bottom line is your feet are teeming with fungal diversity, so wear your flip flops in locker rooms if you don’t want to mix your foot fungi with someone else’s fungi.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Thursday, October 01, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
Grants to Help Identify Variants in the Genome’s Regulatory Regions
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Thursday, September 24, 2015
Grants Awarded to Explore the Genome’s Regulatory Regions that Affect Disease Risk
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Tuesday, September 22, 2015
NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Diet, Exercise, Smoking Habits and Genes Interact To Affect and Risk
NIH-funded study points to converging factors that drive disease-related inflammation.
Thursday, September 17, 2015
NIH Grants Seek Best Ways To Combine Genomic Information and EHRs
Researchers seek to better understand genomic basis of disease, provide tailored care to patients.
Friday, September 04, 2015
Cellular Factors that Shape the 3D Landscape of the Genome Identified
Researchers have identified 50 cellular factors required for the proper 3D positioning of genes by using novel large-scale imaging technology.
Tuesday, August 18, 2015
Nuclear Process in the Brain That May Affect Disease Uncovered
Scientists have shown that the passage of molecules through the nucleus of a star-shaped brain cell, called an astrocyte, may play a critical role in health and disease.
Tuesday, August 18, 2015
Scientific News
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos