Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Fungal Findings

Published: Monday, June 10, 2013
Last Updated: Monday, June 10, 2013
Bookmark and Share
NIH team used genomic approach to gain a better understanding of the fungi in their new study.

A genomic survey of the fungi living on our skin provides a framework for understanding how these microbes contribute to skin health and disease.

Complex communities of microbes live on the surface of our bodies. These fungi, bacteria and viruses are collectively known as the skin microbiome.

A team from NIH’s National Human Genome Research Institute (NHGRI) and National Cancer Institute (NCI) previously used genomic techniques to study skin bacteria.

They found diverse bacterial communities that varied between people and by skin site. In their new study, the team used a similar genomic approach to gain a better understanding of the fungi that live on our skin.

Fungi include molds, mushrooms, and the yeast that are used to ferment bread and beer. These microbes have been associated with many skin diseases and conditions, including athlete’s foot, eczema, dandruff and toenail infections.

Fungal skin infections affect an estimated 29 million people nationwide. But fungi can be slow and difficult to grow in laboratories, making fungal infections hard to identify and treat.

As described online in Nature on May 22, 2013, the scientists collected samples at 14 body sites from 10 healthy adults. They focused on a fragment of DNA shared by all fungi-the intervening internal transcribed spacer 1 (ITS1) of ribosomal RNA-that could be used to classify fungi at the genus level with greater than 97% accuracy.

By generating more than 5 million ITS1 sequences from the samples, the team was able to identify more than 80 genus-level fungal types living on human skin. In contrast, traditional culturing methods could identify only 18 types.

Ascomycetes and Basidiomycetes were found at all the skin sites. Fungi of the genus Malassezia were the predominant type on 11 of the 14 sites, including behind the ears, in nostrils, on the back, and on the arms.

The team found that heels, which don’t show extensive bacterial diversity, were the most complex site for fungi, with about 80 types represented.

Toe webs, with about 60 types, and toenails, with 40, had the next highest levels of fungal diversity. Hands and arms, which harbor a great diversity of bacteria, had relatively few types of fungi.

Fungal communities on the core body were quite stable over time, with little change when tested up to 3 months apart. In contrast, fungi on the feet altered considerably over 3 months, perhaps reflecting more environmental exposure.

“The fungal communities on the human body are complex and site-specific,” says co-senior author Dr. Heidi Kong of NCI. “By gaining a more complete awareness of the fungal and bacterial ecosystems, we can better address associated skin diseases, including fungal infections, which can be related to cancer treatments.”

“The data from our study gives us a baseline about normal individuals that we never had before,” says co-senior author Dr. Julie Segre of NHGRI. “The bottom line is your feet are teeming with fungal diversity, so wear your flip flops in locker rooms if you don’t want to mix your foot fungi with someone else’s fungi.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Predicting Effective Drug Combinations For TB
Researchers analyzed gene regulatory networks to explain the effectiveness of an experimental drug combination against drug-resistant tuberculosis bacteria.
Wednesday, June 15, 2016
Genomic Data Commons Launched
Part of the National Cancer Moonshot, the GDC will centralize and standardize accessible data.
Tuesday, June 07, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
Decoding Ties Between Vascular Disease, Alzheimer’s
NIH consortium uses big data, team science to uncover complex interplay of factors.
Tuesday, March 15, 2016
Researchers Find Link Between Death of Tumor-Support Cells and Cancer Metastasis
Researchers at NIH have found that the lifespan of supportive cells in a tumor may control the spread of cancer.
Tuesday, February 23, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Scientific News
Gene Terapy for Muscle Wasting Developed
New gene therapy could save millions of people suffering from muscle wasting disease.
Gene-Editing 'Toolbox' Targets Multiple Genes Simultaneously
Researchers have designed a system that modifies, or edits, multiple genes in a genome at once while minimising unintentional effects.
Discovering the First Farmers
Genetic analyses reveal a collection of highly distinct groups in the Near East and Europe at the dawn of agriculture.
Fighting Cancer Through Protein Pathways
Researchers have found a new drug target within a protein production pathway critical to regulating growth and proliferation of cells.
Mutations in DNA-Repair Genes Found in Advanced Prostate Cancers
New findings indicate that nearly 12% of male advanced prostate cancer sufferers have inherited mutation in DNA-repair genes.
Ice Bucket Challenge Instrumental in Gene Discovery
Donations from the ALS Ice Bucket Chellenge allowed for the largest-ever study of inherited ALS, which identified a new ALS gene.
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
Targeting BRAF Mutations in Thyroid Cancer
Treating metastatic thyroid cancer patients harboring a BRAF mutation with vemurafenib showed anti-tumor activity in a third of patients.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!