Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Therapeutic Nanoparticles from Grapefruit Juice

Published: Monday, June 10, 2013
Last Updated: Monday, June 10, 2013
Bookmark and Share
Grapefruit-derived nanovectors to deliver targeted drugs to treat cancer.

Researchers used nanoparticles derived from grapefruits to deliver targeted drugs to treat cancer in mice. The technique may prove to be a safe and inexpensive way to make customized therapies.

Nanoparticles are emerging as an efficient tool for drug delivery. Microscopic pouches made of synthetic lipids can serve as a carrier, or vector, to protect drug molecules within the body and deliver them to specific cells.

However, these synthetic nanovectors pose obstacles including potential toxicity, environmental hazards and the cost of large-scale production.

Recently, scientists have found that mammalian exosomes-tiny lipid capsules released from cells-can serve as natural nanoparticles. But making therapeutic nanovectors from mammalian cells poses various production and safety challenges.

A research team led by Dr. Huang-Ge Zhang at the University of Louisville hypothesized that exosome-like nanoparticles from inexpensive, edible plants might be used to make nanovectors to bypass these challenges.

The scientists set out to isolate nanoparticles from the juice of grapefruits, grapes and tomatoes. Their work was funded in part by NIH’s National Cancer Institute (NCI) and National Center for Complementary and Alternative Medicine (NCCAM). The study appeared on May 21, 2013 in Nature Communications.

The researchers found that grapefruit juice yielded the most lipid nanoparticles. They then prepared grapefruit-derived nanovectors (GNVs) and tested them in different cell types. GNVs were taken up by a variety of cells at body temperature.

These nanovectors had no significant effect on cell growth or death rates. They proved to be more stable than a synthetic nanovector and were also taken up by cells more readily.

The scientists next tested the GNVs in mice. Three days after fluorescently labeled GNVs were injected into a tail vein or body cavity, they appeared primarily in the liver, lungs, kidneys and spleen.

After intramuscular injections, GNVs were found predominantly in muscle. After intranasal administration, most were seen in the lung and brain.

Although GNVs could be detected 7 days after tail-vein injection, there were no signs of inflammation or other side effects in the mice from any of the treatments.

In addition, no GNVs appeared to pass through the placenta, suggesting they might be safe during pregnancy.

GNVs proved capable of delivering a broad range of therapeutic agents to targeted cells in culture, including chemotherapy drugs, short interfering RNA (siRNA), a DNA expression vector and antibodies.

The researchers next tested GNVs in mouse models of cancer. GNVs carrying a tumor inhibitor reduced tumor growth and prolonged survival when given intranasally to mice with brain tumors.

When injected into mouse models of colon cancer, GNVs with targeting molecules collected in tumor tissue to deliver therapies and slow tumor growth.

“These nanoparticles, which we’ve named grapefruit-derived nanovectors, are derived from an edible plant, and we believe they are less toxic for patients, result in less biohazardous waste for the environment, and are much cheaper to produce at large scale than nanoparticles made from synthetic materials,” Zhang says.

The GNVs are currently being testing for safety in an early clinical trial of colon cancer patients.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Predicting Effective Drug Combinations For TB
Researchers analyzed gene regulatory networks to explain the effectiveness of an experimental drug combination against drug-resistant tuberculosis bacteria.
Wednesday, June 15, 2016
Genomic Data Commons Launched
Part of the National Cancer Moonshot, the GDC will centralize and standardize accessible data.
Tuesday, June 07, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
Decoding Ties Between Vascular Disease, Alzheimer’s
NIH consortium uses big data, team science to uncover complex interplay of factors.
Tuesday, March 15, 2016
Researchers Find Link Between Death of Tumor-Support Cells and Cancer Metastasis
Researchers at NIH have found that the lifespan of supportive cells in a tumor may control the spread of cancer.
Tuesday, February 23, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Revealing the Genetic Causes of Bowel Cancer
A landmark study has given the most detailed picture yet of the genetics of bowel cancer — the UK's fourth most common cancer.
The Epigenetic Influences of Chronic Pain
Researchers at Drexel University College of Medicine are aiming to identify new molecular mechanisms involved in pain.
Fighting Resistant Blood Cancer Cells
Biologists present new findings on chronic myeloid leukemia and possible therapeutic approaches.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
Mothers Obesity Could be Passed on in mtDNA
Obesity can predispose offspring in multiple generations to metabolic problems.
New Imaging Method Reveals Nanoscale Details about DNA
Enhancement to super-resolution microscopy shows orientation of individual molecules, providing a new window into DNA’s structure and dynamics.
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
Naked Mole Rat Exhibits “Extraordinary” Cancer Resistance
Scientists are getting closer to understanding the anti-cancer mechanism of the naked mole rat by making induced pluripotent stem cells.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!