Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Therapeutic Nanoparticles from Grapefruit Juice

Published: Monday, June 10, 2013
Last Updated: Monday, June 10, 2013
Bookmark and Share
Grapefruit-derived nanovectors to deliver targeted drugs to treat cancer.

Researchers used nanoparticles derived from grapefruits to deliver targeted drugs to treat cancer in mice. The technique may prove to be a safe and inexpensive way to make customized therapies.

Nanoparticles are emerging as an efficient tool for drug delivery. Microscopic pouches made of synthetic lipids can serve as a carrier, or vector, to protect drug molecules within the body and deliver them to specific cells.

However, these synthetic nanovectors pose obstacles including potential toxicity, environmental hazards and the cost of large-scale production.

Recently, scientists have found that mammalian exosomes-tiny lipid capsules released from cells-can serve as natural nanoparticles. But making therapeutic nanovectors from mammalian cells poses various production and safety challenges.

A research team led by Dr. Huang-Ge Zhang at the University of Louisville hypothesized that exosome-like nanoparticles from inexpensive, edible plants might be used to make nanovectors to bypass these challenges.

The scientists set out to isolate nanoparticles from the juice of grapefruits, grapes and tomatoes. Their work was funded in part by NIH’s National Cancer Institute (NCI) and National Center for Complementary and Alternative Medicine (NCCAM). The study appeared on May 21, 2013 in Nature Communications.

The researchers found that grapefruit juice yielded the most lipid nanoparticles. They then prepared grapefruit-derived nanovectors (GNVs) and tested them in different cell types. GNVs were taken up by a variety of cells at body temperature.

These nanovectors had no significant effect on cell growth or death rates. They proved to be more stable than a synthetic nanovector and were also taken up by cells more readily.

The scientists next tested the GNVs in mice. Three days after fluorescently labeled GNVs were injected into a tail vein or body cavity, they appeared primarily in the liver, lungs, kidneys and spleen.

After intramuscular injections, GNVs were found predominantly in muscle. After intranasal administration, most were seen in the lung and brain.

Although GNVs could be detected 7 days after tail-vein injection, there were no signs of inflammation or other side effects in the mice from any of the treatments.

In addition, no GNVs appeared to pass through the placenta, suggesting they might be safe during pregnancy.

GNVs proved capable of delivering a broad range of therapeutic agents to targeted cells in culture, including chemotherapy drugs, short interfering RNA (siRNA), a DNA expression vector and antibodies.

The researchers next tested GNVs in mouse models of cancer. GNVs carrying a tumor inhibitor reduced tumor growth and prolonged survival when given intranasally to mice with brain tumors.

When injected into mouse models of colon cancer, GNVs with targeting molecules collected in tumor tissue to deliver therapies and slow tumor growth.

“These nanoparticles, which we’ve named grapefruit-derived nanovectors, are derived from an edible plant, and we believe they are less toxic for patients, result in less biohazardous waste for the environment, and are much cheaper to produce at large scale than nanoparticles made from synthetic materials,” Zhang says.

The GNVs are currently being testing for safety in an early clinical trial of colon cancer patients.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
Monday, September 26, 2016
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Wednesday, September 21, 2016
Catalogue of Human Genetic Diversity Expands
The largest data set of human exomes to date has been assembled to better study seqence variants and their consequences.
Wednesday, September 07, 2016
$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Public Support for National Study
Survey shows the majority of respondents support or show willingness for national precision medicine study.
Thursday, August 18, 2016
Schizophrenia, Autism Share Genetic Causes
Monkey brain developmental atlas pinpoints when, where genes activate.
Tuesday, August 16, 2016
How Breast Cancers Resist Chemotherapy
Researchers discovered an unexpected way that breast cancers cells with mutant BRCA1 or BRCA2 genes acquire drug resistance and evade chemotherapies.
Wednesday, August 10, 2016
Mutations Linked to Immunotherapy Resistance
Researchers uncover mutations in tumors of three patients with advanced melanoma that allowed the tumors to become resistant to the immune checkpoint inhibitor pembrolizumab (Keytruda®).
Tuesday, August 09, 2016
Genetic Cause of Rare Pediatric Neuropathy Identified
NIH mouse study identifies the mechanism responsible for a rare form of pediatric neuropathy.
Thursday, August 04, 2016
Depression Genetics Insight from Crowd-Sourced Data
Genome sites liked to depression have been discovered from data shared by people who had purchased their genetic profiles online.
Tuesday, August 02, 2016
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Scientific News
ReadCoor Launched to Commercialize 3D Sequencing Tech
ReadCoor will leverage the Wyss Institute’s method for simultaneously sequencing and mapping RNAs within cells and tissues to advance development of diagnostics.
NCI Collaborates with Multiple Myeloma Research Foundation
NCI collaborates with MMRF to incorporate genomic and clinical data into NCI Genomic Data Commons database.
Modified Yeast Shows Plant Response to Key Hormone
Researchers have developed a toolkit based on modified yeast to determine plant responses to auxin.
Death-or-Repair Switch Protein Identified
Researchers have identified a protein that plays a key role in the decision process of cell damage repair or cellular suicide.
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Regulatory RNA Essential to DNA Damage Response
Researchers discover a tumour suppressor is stabilized by an RNA molecule, which helps cells respond to DNA damage.
Wearable Microscope Can Measure Fluorescent Dyes Through Skin
UCLA research could make monitoring disease biomarkers easier and more cost-effective.
Crispr Toolbox Expanded By Protein
Researchers have shown a newly discovered CRISPR protein has two distinct RNA cutting activities.
Genetic Impact of Endurance Training
Research has found that endurance training changes genetic activity in thousands of genes, giving rise to large number of altered RNA variants.
Heart Arrhythmia Caused by Mosaic of Mutant Cells
Researchers have solved the genetic mystery of an infant suffering from heart arrhythmia.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!