Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Chemical Screen Points to New Line of Attack Against Neuroblastoma

Published: Monday, June 10, 2013
Last Updated: Monday, June 10, 2013
Bookmark and Share
In the war on neuroblastoma, the current chemical weaponry is reaching its limit.

Kimberly Stegmaier, a physician-scientist who treats children with cancer, describes having reached a ceiling in terms of treating this type of tumor with classical chemotherapy drugs. Such drugs are designed to kill cancer cells, but they also destroy many healthy cells in the process. Children with high-risk neuroblastoma may receive multiple cycles of chemotherapy over a six-month period, in addition to stem-cell transplantation, radiation, surgery, and immunotherapy. But for many patients, this is still not enough: the majority of patients with high-risk neuroblastoma are not cured with current treatment regimens.

For many years, Stegmaier and her colleagues have been pursuing a new approach: instead of looking for drugs that will directly kill cancer cells, they are on the hunt for drugs that will, in simple terms, make cancer cells grow up. This approach, known as differentiation therapy, is based on the concept that cancer cells are stuck in – or have regressed to – an immature state. In this state, they multiply unchecked. By using chemical compounds to coax cancer cells to mature, or differentiate, researchers have successfully treated certain forms of cancer, such as acute promyelocytic leukemia. Several lines of evidence suggest that differentiation therapy could also be used to treat patients with high-risk neuroblastoma. But finding compounds that have this maturing effect has not been easy.

In a paper published in Chemistry & Biology, Stegmaier and her colleagues at the Broad Institute, the Dana-Farber Cancer Institute, and Boston Children’s Hospital report important progress in developing a strategy to pinpoint promising compounds. Using a new method, the team uncovered a probe compound that causes neuroblastoma cells to differentiate. Although not a drug, the compound points to a new way of targeting neuroblastoma cells.

“We know that in many ways, these cells are poised to differentiate if we could only figure out the trigger,” said Stegmaier, a Broad associate member and a member of the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center. “The hope is that differentiation therapy offers an alternative mechanism [for attacking neuroblastoma], and that the toxicity won’t be as great as with standard cytotoxins.”

Stegmaier, whose connection to the Broad dates back to her time as a postdoctoral fellow in the laboratory of Broad core member Todd Golub, teamed up with the Broad’s Therapeutics Platform to search for compounds of interest. While a postdoc, Stegmaier had developed a gene expression profile, or signature, of differentiated neuroblastoma cells. This unique signature of active genes would give the researchers a signal they could look for to identify the most promising compounds.

Rather than screening all of the chemical compounds in the Therapeutics Platform’s extensive collection, the team decided to use a subset of molecules with a particular focus. These compounds – built at the Broad through a process known as diversity-oriented synthesis (DOS) – were specifically developed to focus on genome-organizing complexes known as chromatin.

“There were a couple of things that were intriguing right off of the bat with that data,” said Jeremy Duvall, manager of DOS chemistry in the Therapeutics Platform. The results of the screen pointed to a DOS compound known simply as BRD8430, could induce neuroblastoma cells to mature, while closely related structures could not. “There seemed to be a preferred stereochemical relationship that affected its activity. That was exciting: that’s what we look for when we look at these datasets.”

BRD8430 is part of a class of compounds known as HDAC inhibitors. These compounds target histone deacetylases (HDACs), which are a type of gene-regulating protein with lots of effects. HDAC inhibitors have been connected to a variety of diseases, including sickle cell anemia, psychiatric diseases, metabolic diseases, and other forms of cancer. There are a number of different kinds of HDACs, and some inhibitors hit more than one of these targets. Broad associate member Jay Bradner, who has studied HDAC inhibitors in the context of sickle cell anemia, helped Stegmaier determine that BRD8430 selectively targets HDACs 1 and 2.

Duvall recalls the meeting where Stegmaier showed the team data suggesting that BRD8430 targeted HDACs 1 and 2. “When we saw the data, we realized that a door had opened,” he said. “We told her, you need to talk to the HDAC experts at the Broad: there’s a wealth of knowledge we could tap into right here.”

Ed Holson, director of medicinal chemistry for the Broad’s Stanley Center for Psychiatric Research, has been assembling a toolkit of selective HDAC inhibitors for the last four years, looking for cognitive enhancers that could be used to treat Alzheimer’s disease or post-traumatic stress disorder. When Holson heard about the neuroblastoma results, he immediately offered up the toolkit of compounds. These probe compounds helped the team confirm its results and validate its findings.

“We’re happy to share these compounds,” said Holson who has shared the toolkit with several other research groups. “The whole idea is to leverage the domain expertise that we have in the Stanley Center across [the Broad’s] platforms, programs, and wherever they might be applicable. HDACs have been implicated in a lot of different diseases, and the point of the toolkit is to get to a finer resolution about which HDACs are important in certain indications.”

Stegmaier and her colleagues also did a series of genetic experiments to turn off, or knock down, HDACs 1 and 2. These experiments also confirmed that these enzymes could play a key role in neuroblastoma differentiation. They then treated cells with both BRD8430 and cis-retinoic acid, a treatment already being given to patients with neuroblastoma, and found that the compound enhanced activity of the existing treatment, suggesting a possible role for combination therapy. But a long path to the clinic may lie ahead.

“While there are tool compounds that selectively target HDAC 1 and 2, there is not yet a commercially available compound with good drug-like properties,” said Stegmaier. “From a clinical perspective, that’s an important next step.”

But Stegmaier adds that if it is possible to develop a drug that selectively inhibits HDACs 1 and 2, but not the other HDACs, it could minimize toxicity. “We don’t know yet for certain, but there’s hope,” she said. “Companies have shown interest in pursuing selective inhibitors in the past – maybe these findings will reinvigorate that work.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Screen of Human Genome Reveals Set of Genes Essential for Cellular Viability
Using two complementary analytical approaches, scientists at Whitehead Institute and Broad Institute of MIT and Harvard have for the first time identified the universe of genes in the human genome essential for the survival and proliferation of human cell lines or cultured human cells.
Monday, October 19, 2015
DARPA Awards $32 Million Contract to MIT, Broad Institute Foundry
A facility at the Broad Institute of MIT and Harvard and MIT that aims to achieve the full potential of engineering biology has received a five-year, $32 million contract from the Defense Advanced Research Projects Agency (DARPA).
Monday, September 28, 2015
Scientists Discover New System For Human Genome Editing
CRISPR-Cpf1 system could disrupt both scientific and commercial landscape.
Monday, September 28, 2015
Broad Institute & Google Genomics Combine Bioinformatics and Computing Expertise
Both companies explore how to break down major technical barriers that increasingly hinder biomedical research.
Thursday, June 25, 2015
CRISP-Disp Leverages CRISPR-Cas9 to Deliver RNA Structures to Targets in the Genome
A team of researchers from the Broad Institute and the Harvard Stem Cell Institute has developed CRISP-Disp, a method that expands on the CRISPR-Cas9 system, allowing researchers to display multiple, large RNA structures on the Cas9 protein.
Wednesday, June 10, 2015
GTEx: Useful Expression For Cancer Research
GTEx Project has recently published several papers reporting on findings from its two-year pilot phase.
Tuesday, May 26, 2015
Single-cell Analysis Hits its Stride
Advances in technology and computational analysis enable scale and affordability, paving the way for translational studies.
Saturday, May 23, 2015
Highly Efficient New Cas9 for In Vivo Genome Editing
New finding is expected to expand therapeutic and experimental applications of CRISPR.
Tuesday, April 07, 2015
Broad Institute of MIT and Harvard and Bayer Healthcare Expand their Partnership
Collaboration to develop therapies for cardiovascular disease.
Thursday, April 02, 2015
In vivo CRISPR-Cas9 Screen Sheds Light On Cancer Metastasis And Tumor Evolution
Genome-scale study points to drivers of tumor evolution and metastasis, provides roadmap for future in vivo Cas9 screens.
Friday, March 06, 2015
Scientists Map the Human Loop-ome, Revealing a New Form of Genetic Regulation
Researchers describe the results of a five-year effort to map, in unprecedented detail, how the 2-meter long human genome folds inside the nucleus of a cell.
Tuesday, December 23, 2014
Disorder in Gene-Control System is a Defining Characteristic of Cancer, Study Finds
Findings indicate that the disarray in the on-off mechanism is one of the defining characteristics of cancer.
Tuesday, December 23, 2014
Two Studies Identify A Detectable, Pre-Cancerous State In The Blood
Findings pave way for new lines of cancer research focused on detection and prevention.
Thursday, November 27, 2014
Dramatic Response And Resistance To Cancer Drug Traced
Sequencing reveals why thyroid tumor responded to, and eventually resisted, treatment.
Friday, October 10, 2014
Study Expands the Cancer Genomics Universe
The universe of cancer mutations is much bigger than previously thought, and key cancer genes are still to be discovered.
Tuesday, January 28, 2014
Scientific News
Revolutionary Technologies Developed to Improve Outcomes for Lung Cancer Patients
Breath test to detect lung cancer brings oxygen directly to the wound.
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
New Gene Map Reveals Cancer’s Achilles’ Heel
Team of researchers switches off almost 18,000 genes
New Discovery Sheds Light on Disease Risk
Gaps between genes interact to influence the risk of acquiring disease.
Mathematical Model Helps Show How Zebrafish Get Their Stripes
The iconic yellow and blue stripes of zebrafish form dynamically as young fish develop and grow. A mathematical model developed by Brown University researchers helps to show how pigment cells interact to form the pattern.
Epigenome Influenced by Habitat and Lifestyle
Study on Pygmy hunter-gatherer populations and Bantu farmers in Central Africa shows that habitat and lifestyle can impact the epigenome.
Shining Light on Microbial Growth and Death Inside our Guts
Precise measurement of microbial populations in gastrointestinal tracts could be key to identifying novel therapies.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos