Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Two Gene Variants May Predict Who Will Benefit from Breast Cancer Prevention Drugs

Published: Friday, June 14, 2013
Last Updated: Friday, June 14, 2013
Bookmark and Share
NIH-supported discovery could advance individualized care of high-risk women.

In women at high risk for breast cancer, a long-term drug treatment can cut the risk of developing the disease in half.

Researchers supported by the National Institutes of Health have now identified two gene variants that may predict which women are most likely to benefit from this therapy - and which should avoid it.

The work represents a major step toward truly individualized breast cancer prevention in women at high risk for the disease based on their age, family history of breast cancer, and personal medical history.

"Our study reveals the first known genetic factors that can help predict which high-risk women should be offered breast cancer prevention treatment and which women should be spared any unnecessary expense and risk from taking these medications," said the study's lead scientist, James N. Ingle, M.D., professor of oncology at the Mayo Clinic in Rochester, Minn.

Ingle continued, "We also discovered new information about how the drugs tamoxifen and raloxifene work to prevent breast cancer."

Ingle and Mayo-based colleagues in the NIH Pharmacogenomics Research Network (PGRN) conducted the study in collaboration with PGRN-affiliated researchers at the RIKEN Center for Genomic Medicine in Tokyo.

Data and patient DNA came from the long-running National Surgical Adjuvant Breast and Bowel Project (NSABP), supported by the National Cancer Institute.

"This innovative, PGRN-enabled international research partnership has produced the first gene-based method to identify which women are likely to benefit from a readily available preventive therapy," said PGRN director Rochelle Long, Ph.D., of the NIH's National Institute of General Medical Sciences. "Because the disease affects so many women worldwide, this work will have a significant impact."

The research, which shows nearly a six-fold difference in disease risk depending on a woman's genetic makeup, appears in the June 13, 2013, issue of Cancer Discovery.

Women undergoing breast cancer preventive treatment take tamoxifen or raloxifene for five years.

In rare cases, the drugs can cause dangerous side effects, including blood clots, strokes and endometrial cancer.

Many women never try the therapy because the chance of success seems small (about 50 women in the NSABP trials needed to be treated to prevent one case of breast cancer) compared to the perceived risk of side effects.

More women might benefit from the potentially life-saving strategy if doctors could better predict whether the therapy was highly likely to work. That's what the current study begins to do.

The investigators leveraged data from past NSABP breast cancer prevention trials that involved a total of more than 33,000 high-risk women - the largest sets of such data in the world. Women in the trials gave scientists permission to use their genomic and other information for research purposes.

The scientists analyzed the genomic data by focusing on more than 500,000 genetic markers called single nucleotide polymorphisms (SNPs). Each SNP represents a single variation in the DNA sequence at a particular location within the genome.

To determine whether any SNPs were associated with breast cancer risk, the researchers computationally searched for SNPs that occurred more commonly in women who developed breast cancer during the trial than in women who remained free of the disease.

The analysis identified two such SNPs - one in a gene called ZNF423 and the other near a gene called CTSO.

Neither ZNF423 nor CTSO - nor any SNPs related to these genes - had previously been associated with breast cancer or response to the preventive drugs.

The scientists' work revealed that women with the beneficial version of the two SNPs were 5.71 times less likely to develop breast cancer while taking preventive drugs than were women with neither advantageous SNP.

Using a variety of biochemical studies, the scientists learned that ZNF423 and CTSO act by affecting the activity of BRCA1, a known breast cancer risk gene.

Healthy versions of BRCA1 reduce disease by repairing a serious form of genetic damage. Harmful versions of BRCA1 dramatically increase a woman's chance of developing breast cancer.

"The results of our collaborative research bring us a major step toward the goal of truly individualized prevention of breast cancer," said Ingle. "Our findings also underscore the value of studying the influence of gene variations on drug responses."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Thursday, October 01, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
Grants to Help Identify Variants in the Genome’s Regulatory Regions
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Thursday, September 24, 2015
Grants Awarded to Explore the Genome’s Regulatory Regions that Affect Disease Risk
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Tuesday, September 22, 2015
NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Diet, Exercise, Smoking Habits and Genes Interact To Affect and Risk
NIH-funded study points to converging factors that drive disease-related inflammation.
Thursday, September 17, 2015
NIH Grants Seek Best Ways To Combine Genomic Information and EHRs
Researchers seek to better understand genomic basis of disease, provide tailored care to patients.
Friday, September 04, 2015
Cellular Factors that Shape the 3D Landscape of the Genome Identified
Researchers have identified 50 cellular factors required for the proper 3D positioning of genes by using novel large-scale imaging technology.
Tuesday, August 18, 2015
Nuclear Process in the Brain That May Affect Disease Uncovered
Scientists have shown that the passage of molecules through the nucleus of a star-shaped brain cell, called an astrocyte, may play a critical role in health and disease.
Tuesday, August 18, 2015
Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Scientific News
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos