Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study Shows How the Nanog Protein Promotes Growth of Head and Neck Cancer

Published: Monday, June 24, 2013
Last Updated: Monday, June 24, 2013
Bookmark and Share
A protein called Nanog helps the renewal of healthy embryonic stem cells and promotes cancer stem cell proliferation in head and neck cancer.

A new study led by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC–James) has identified a biochemical pathway in cancer stem cells that is essential for promoting head and neck cancer.
 
The study shows that a protein called Nanog, which is normally active in embryonic stem cells, promotes the growth of cancer stem cells in head and neck cancer. The findings provide information essential for designing novel targeted drugs that might improve the treatment of head and neck cancer.
 
Normally, Nanog helps healthy embryonic stem cells maintain their undifferentiated, uncommitted (i.e., pluripotent) state. But recent evidence suggests that Nanog promotes tumor growth by stimulating the proliferation of cancer stem cells.
 
“This study defines a signaling axis that is essential for head and neck cancer progression, and our findings show that this axis may be disrupted at three key steps,” says principal investigator Quintin Pan, PhD, associate professor of otolaryngology at the OSUCCC – James. “Targeted drugs that are designed to inhibit any or all of these three steps might greatly improve the treatment of head and neck cancer.”
 
The findings were published in a recent issue of the journal Oncogene.
 
Specifically, the study shows that an enzyme called “protein kinase C-epsilon” (PKCepsilon) adds energy-packing phosphate groups to the Nanog molecule. This phosphorylation of Nanog stabilizes and activates the molecule.
 
It also triggers a series of events: Two Nanog molecules bind together, and these are joined by a third “co-activating” molecule called p300. This molecular complex then binds to the promoter region of a gene called Bmi1, an event that increases the expression of the gene. This, in turn, stimulates proliferation of cancer stem cells.
 
“Our work shows that the PKCepsilon/Nanog/Bmi1 signaling axis is essential to promote head and neck cancer,” Pan says. “And it provides initial evidence that the development of inhibitors that block critical points in this axis might yield a potent collection of targeted anti-cancer therapeutics that could be valuable for the treatment of head and neck cancer.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

HPV Can Damage Genes and Chromosomes Directly, Sequencing Study Shows
This study shows that HPV can damage genes and chromosomes directly, revealing a new way by which HPV might contribute to cancer development.
Tuesday, November 12, 2013
Nano Drug Crosses Blood-Brain Tumor Barrier
This laboratory study shows that a nanotechnology drug called SapC-DOPS crosses barrier and targets brain-tumor cells and retards growth of tumor blood vessels.
Monday, July 22, 2013
Scientific News
Genetic Cause of Rare Allergy
Institute has identified a genetic mutation responsible for a rare form of inherited hives induced by vibratory urticaria.
Mitochondria Shown to Trigger Cell Ageing
An international team of scientists has for the first time shown that mitochondria, the batteries of the cells, are essential for ageing.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Validating the Accuracy of CRISPR-Cas9
IBS Researchers create multiplex Digenome-seq to find errors in CRISPR-Cas9 processes.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
How to Unlock Inaccessible Genes
An international team of biologists has discovered how specialized enzymes remodel the extremely condensed genetic material in the nucleus of cells in order to control which genes can be used.
Viral Gene Editing System Corrects Genetic Liver Disease
Penn study has implications for developing safe therapies for an array of rare diseases via new gene cut-and-paste methods.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!