Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Moffitt Cancer Center Researchers Identify Genetic Variants for Prostate Cancers

Published: Monday, June 24, 2013
Last Updated: Monday, June 24, 2013
Bookmark and Share
Researchers have developed a method for identifying aggressive prostate cancers that require immediate therapy.

It relies on understanding the genetic interaction between single nucleotide polymorphisms (SNPs). The goal is to better predict a prostate cancer’s aggressiveness to avoid unnecessary radical treatment.

Their study was published in the online journal PLOS ONE in April.

According to the authors, prostate cancer accounts for 20 percent of all cancers and 9 percent of cancer deaths. It is the most common cancer and was the second leading cause of cancer death in American men in 2012.

“For most prostate cancer patients, the disease progresses relatively slowly,” said study co-author Hui-Yi Lin, Ph.D., assistant member of the Chemical Biology and Molecular Medicine Program at Moffitt. “However, some cases grow aggressively and metastasize. It is often difficult to tell the difference between the two.”

The two treatment options for aggressive prostate cancer — radical surgery and radiation therapy — have negative side effects, such as incontinence and erectile dysfunction. It is why the authors believe there is an urgent need for biomarkers that can identify or predict aggressive types of prostate cancer.

Through examining combinations of genetic variants, or SNP-SNP interactions, the researchers have identified and validated several genetic changes that are related to prostate cancer aggressiveness. Their work also shows that the epithelial growth factor receptor may be the hub for these interactions because it is involved in the growth of blood vessels (angiogenesis), which in turn stimulates tumor growth.

“Our findings identified five SNP-SNP interactions in the angiogenesis genes associated with prostate cancer aggressiveness,” explained study co-author Jong Y. Park, Ph.D., associate member of Moffitt’s Cancer Epidemiology Program. “We successfully detected the genotype combinations that put patients at risk of aggressive prostate cancer and then explored the underlying biological associations among angiogenesis genes associated with aggressive prostate cancer.”

The researchers concluded that the gene network they constructed based on SNP-SNP interactions indicates there are novel relationships among critical genes involved in the angiogenesis pathway in prostate cancer.

“Our findings will help physicians identify patients with an aggressive type of prostate cancer and may lead to better personalized treatment in the future,” Park said.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Moffitt, Vermillion Collaborate to Model Improvements in Ovarian Cancer Care
The purpose of the study is to produce clinical and economic data to support a new value-based practice model.
Monday, May 12, 2014
Protein Complex Linked to Cancer Growth May Also Help Fight Tumors
Researchers have discovered a gene expression signature that may lead to new immune therapies for lung cancer patients.
Thursday, July 25, 2013
Race, Ethnicity Affect Likelihood of Finding a Suitable Unrelated Stem Cell Donor
Researchers at Moffitt Cancer Center describe the greater difficulty in finding matched, unrelated donors for non-Caucasian patients who are candidates for hematopoietic cell transplantation (HCT).
Monday, September 17, 2012
Moffitt, Sanford-Burnham and Florida Hospital Create Personalized Medicine Partnership
The partnership will conduct collaborative research to accelerate discovery and to develop new treatments in the areas of cancer and metabolic diseases.
Thursday, February 16, 2012
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
Web App Helps Researchers Explore Cancer Genetics
Brown University computer scientists have developed a new interactive tool to help researchers and clinicians explore the genetic underpinnings of cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!