" "
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Absence of Gene Leads to Earlier, More Severe Case of Multiple Sclerosis

Published: Tuesday, June 25, 2013
Last Updated: Tuesday, June 25, 2013
Bookmark and Share
UCSF finding in animal study may lead to biomarker that predicts course of disease in humans.

A UC San Francisco-led research team has identified the likely genetic mechanism that causes some patients with multiple sclerosis (MS) to progress more quickly than others to a debilitating stage of the disease. This finding could lead to the development of a test to help physicians tailor treatments for MS patients.

Researchers found that the absence of the gene Tob1 in CD4+ T cells, a type of immune cell, was the key to early onset of more serious disease in an animal model of MS.

Senior author Sergio Baranzini, PhD, a UCSF associate professor of neurology, said the potential development of a test for the gene could predict the course of MS in individual patients.

The study, done in collaboration with UCSF neurology researchers Scott Zamvil, MD, and Jorge Oksenberg, PhD, was published on June 24 in the Journal of Experimental Medicine.

MS is an inflammatory disease in which the protective myelin sheathing that coats nerve fibers in the brain and spinal cord is damaged and ultimately stripped away – a process known as demyelination. During the highly variable course of the disease, a wide range of cognitive, debilitating and painful neurological symptoms can result.

In previously published work, Baranzini and his research team found that patients at an early stage of MS, known as clinically isolated syndrome, who expressed low amounts of Tob1 were more likely to exhibit further signs of disease activity – a condition known as relapsing-remitting multiple sclerosis – earlier than those who expressed normal levels of the gene.

The current study, according to Baranzini, had two goals: to recapitulate in an animal model what the researchers had observed in humans, and uncover the potential mechanism by which it occurs.

The authors were successful on both counts. They found that when an MS-like disease was induced in mice genetically engineered to be deficient in Tob1, the mice had significantly earlier onset compared with wild-type mice, and developed a more aggressive form of the disease.

Subsequent experiments revealed the probable cause: the absence of Tob1 in just CD4+ T cells. The scientists demonstrated this by transferring T cells lacking the Tob1 gene into mice that had no immune systems but had normal Tob1 in all other cells. They found that the mice developed earlier and more severe disease than mice that had normal Tob1 expression in all cells including CD4+.

“This shows that Tob1 only needs to be absent in this one type of immune cell in order to reproduce our initial observations in mice lacking Tob1 in all of their cells,” said Baranzini.
Personalized Treatments for MS Patients

The researchers also found the likely mechanism of disease progression in the Tob1-deficient mice: higher levels of Th1 and Th17 cells, which cause an inflammatory response against myelin, and lower levels of Treg cells, which normally regulate inflammatory responses. The inflammation results in demyelination.

The research is significant for humans, said Baranzini, because the presence or absence of Tob1 in CD4+ cells could eventually serve as a prognostic biomarker that could help clinicians predict the course and severity of MS in individual patients. “This would be useful and important,” he said, “because physicians could decide to switch or modify therapies if they know whether the patient is likely to have an aggressive course of disease, or a more benign course.”

Ultimately, predicted Baranzini, “This may become an example of personalized medicine. When the patient comes to the clinic, we will be able to tailor the therapy based on what the tests tell us. We’re now laying the groundwork for this to happen.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Monday, October 19, 2015
Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Rare Childhood Leukemia Reveals Surprising Genetic Secrets
A coalition of leukemia researchers led by scientists from UC San Francisco has discovered surprising genetic diversity in juvenile myelomonocytic leukemia (JMML), a rare but aggressive childhood blood cancer.
Thursday, October 15, 2015
Double Enzyme Hit May Explain Common Cancer Drug Side Effect
Mouse study suggests genomic screening before treatment may help prevent anemia.
Wednesday, October 14, 2015
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
Researchers Change Cell Types by Flipping a Single Switch
New findings have identified a method for changing one cell type into another in a process called forced transdifferentiation.
Friday, December 06, 2013
Scientific News
Genetic Cause of Rare Allergy
Institute has identified a genetic mutation responsible for a rare form of inherited hives induced by vibratory urticaria.
Mitochondria Shown to Trigger Cell Ageing
An international team of scientists has for the first time shown that mitochondria, the batteries of the cells, are essential for ageing.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Validating the Accuracy of CRISPR-Cas9
IBS Researchers create multiplex Digenome-seq to find errors in CRISPR-Cas9 processes.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
How to Unlock Inaccessible Genes
An international team of biologists has discovered how specialized enzymes remodel the extremely condensed genetic material in the nucleus of cells in order to control which genes can be used.
Viral Gene Editing System Corrects Genetic Liver Disease
Penn study has implications for developing safe therapies for an array of rare diseases via new gene cut-and-paste methods.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!