Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cell Gene Therapy for Sickle Cell Disease Advances Toward Clinical Trials

Published: Tuesday, July 02, 2013
Last Updated: Tuesday, July 02, 2013
Bookmark and Share
Gene therapy technique is scheduled to begin clinical trials by early 2014.

Researchers at UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have successfully established the foundation for using hematopoietic (blood-producing) stem cells from the bone marrow of patients with sickle cell disease to treat the disease.

The study was led by Dr. Donald Kohn, professor of pediatrics and of microbiology, immunology and molecular genetics.

Sickle cell disease causes the body to produce red blood cells that are formed like the crescent-shaped blade of a sickle, which hinders blood flow in the blood vessels and deprives the body's organs of oxygen.

Kohn has introduced an anti-sickling gene into the hematopoietic stem cells to capitalize on the self-renewing potential of stem cells and create a continual source of healthy red blood cells that do not sickle.

The study was published online ahead of press in the Journal of Clinical Investigation.

Kohn's gene therapy approach, which uses hematopoietic stem cells from a patient's own blood, is a revolutionary alternative to current sickle cell disease treatments as it creates a self-renewing normal blood cell by inserting a gene that has anti-sickling properties into hematopoietic stem cells.

This approach also does not rely on the identification of a matched donor, thus avoiding the risk of rejection of donor cells. The anti-sickling hematopoietic stem cells are transplanted back into the patient's bone marrow and multiply the corrected cells that make red blood cells without sickling.

"The results demonstrate that our technique of lentiviral transduction is capable of efficient transfer and consistent expression of an effective anti-sickling beta-globin gene in human sickle cell disease bone marrow progenitor cells, which improved the physiologic parameters of the resulting red blood cells," Kohn said.

Kohn and colleagues found that in the laboratory the hematopoietic stem cells produced new non-sickled blood cells at a rate sufficient for significant clinical improvement for patients. The new blood cells survive longer than sickled cells, which could also improve treatment outcomes.

Sickle cell disease mostly affects people of Sub-Saharan African descent, and more than 90,000 patients in the U.S. have been diagnosed. It is caused by an inherited mutation in the beta-globin gene that makes red blood cells change from their normal shape, which is round and pliable, into a rigid, sickle-shaped cell.

Normal red blood cells are able to pass easily through the tiniest blood vessels, called capillaries, carrying oxygen to organs such as the lungs, liver and kidneys. But due to their rigid structure, sickled blood cells get stuck in the capillaries.

Current treatments include transplanting patients with donor hematopoietic stem cells, which is a potential cure for sickle cell disease, but due to the serious risks of rejection, only a small number of patients have undergone this procedure and it is usually restricted to children with severe symptoms.

This study was supported in part by a Disease Team I Award from the California Institute for Regenerative Medicine, the state's stem cell research agency, which was created by a voter initiative in 2004.

The purpose of the disease team program is to support research focused on one particular disease that leads to the filing of an investigational new drug application with the FDA within four years.

The program is designed to speed translational research - research that takes scientific discoveries from the laboratory to the patient bedside.

This requires new levels of collaboration between basic laboratory scientists, medical clinicians, biotechnology experts and pharmacology experts, to name a few.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Finds Link Between Neural Stem Cell Overgrowth and Autism-like Behavior in Mice
UCLA researchers demonstrates how, in pregnant mice, inflammation can trigger an excessive division of neural stem cells.
Tuesday, October 14, 2014
UCLA Awarded $7 Million to Unravel Mystery Genetic Diseases
UCLA tackle difficult-to-solve medical cases and develop ways to diagnose rare genetic disorders.
Friday, July 04, 2014
Scientists Identify Link Between Stem Cell Regulation and the Development of Lung Cancer
Study explains how factors that regulate the growth of adult stem cells lead to the formation of precancerous lesions.
Tuesday, June 24, 2014
Cells Derived from Pluripotent Stem Cells may Pose Challenges for Clinical Use
UCLA researchers have found that three types of cells derived from hES cells and from iPS cells are similar to each other.
Tuesday, August 23, 2011
Scientists Reprogram Induced Pluripotent Cells into Precursors of Eggs, Sperm
The findings from UCLA researchers can possibly open the door for new treatments for infertility using patient-specific cells.
Wednesday, February 04, 2009
Scientists at UCLA Reprogram Human Skin Cells into Embryonic Stem Cells
UCLA stem cell scientists have reprogrammed human skin cells into cells with the same unlimited properties as embryonic stem cells, without using embryos or eggs.
Tuesday, February 12, 2008
Scientific News
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
Neanderthal DNA Influences Human Disease Risk
Large-scale, evolutionary analysis compares genetic data alongside electronic health records.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH has announced that decipher the genome of the blacklegged tick which could lead to new tick control methods.
"Dark Side" of the Transcriptome
New approach to quantifying gene "read-outs" reveals important variations in protein synthesis and has implications for understanding neurodegenerative diseases.
Individuals' Medical Histories Predicted by their Noncoding Genomes
Researchers have found that analyzing mutations in regions of the genome that control genes can predict medical conditions such as hypertension, narcolepsy and heart problems.
New Source of Mutations in Cancer
Recently, a new mutation signature found in cancer cells was suspected to have been created by a family of enzymes found in human cells called the APOBEC3 family.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!