Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Genome Institute of Singapore Scientists Discover Molecular Communication Network in Human Stem Cells

Published: Tuesday, July 02, 2013
Last Updated: Tuesday, July 02, 2013
Bookmark and Share
Scientists have discovered a molecular network in human embryonic stem cells that integrates cell communication signals to keep the cell in its stem cell state.

Human embryonic stem cells have the remarkable property that they can form all human cell types. Scientists around the world study these cells to be able to use them for medical applications in the future. Many factors are required for stem cells to keep their special state, amongst others the use of cell communication pathways.

Cell communication is of key importance in multicellular organisms. For example, the coordinated development of tissues in the embryo to become any specific organ requires that cells receive signals and respond accordingly. If there are errors in the signals, the cell will respond differently, possibly leading to diseases such as cancer. The communication signals which are used in hESCs activate a chain of reactions (called the extracellular regulated kinase (ERK) pathway) within each cell, causing the cell to respond by activating genetic information.

Scientists at the GIS and MPIMG studied which genetic information is activated in the cell, and thereby discovered a network for molecular communication in hESCs. They mapped the kinase interactions across the entire genome, and discovered that ERK2, a protein that belongs to the ERK signaling family, targets important sites such as non-coding genes and histones, cell cycle, metabolism and also stem cell-specific genes.

The ERK signaling pathway involves an additional protein, ELK1 which interacts with ERK2 to activate the genetic information. Interestingly, the team also discovered that ELK1 has a second, totally opposite function. At genomic sites which are not targeted by ERK signaling, ELK1 silences genetic information, thereby keeping the cell in its undifferentiated state. The authors propose a model that integrates this bi-directional control to keep the cell in the stem cell state.

These findings are particularly relevant for stem cell research, but they might also help research in other related fields.

First author Dr Jonathan Goke from Stem Cell and Developmental Biology at the GIS said, "The ERK signaling pathway has been known for many years, but this is the first time we are able to see the full spectrum of the response in the genome of stem cells. We have found many biological processes that are associated with this signaling pathway, but we also found new and unexpected patterns such as this dual mode of ELK1. It will be interesting to see how this communication network changes in other cells, tissues, or in disease."

"A remarkable feature of this study is, how the information was extracted by computational means from the experimental data," said Prof Martin Vingron from MPIMG and co-author of this study.

Prof Ng Huck Hui added, "This is an important study because it describes the cell's signaling networks and its integration into the general regulatory network. Understanding the biology of embryonic stem cells is a first step to understanding the capabilities and caveats of stem cells in future medical applications."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Unexpected Synergy Between Two Cancer-Linked Proteins Offers Hope for Personalised Cancer Therapy
A team of scientists have discovered a new biomarker which will help physicians predict how well cancer patients respond to cancer drugs.
Thursday, August 08, 2013
Singapore Scientists Discover New Drug Targets for Aggressive Breast Cancer
Study has identified genes that are potential targets for therapeutic drugs against aggressive breast cancer.
Monday, July 29, 2013
Singapore Scientist Wins Coveted Chen New Investigator Award 2013
Dr Patrick Tan is lauded for his significant contributions to the research on genomic profiles of Asian cancers.
Tuesday, April 23, 2013
Scientific News
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
Gene Drive Reversibility Introduces New Layer of Biosafety
Ability to introduce or reverse the spread of genetic traits through populations could one day improve pest management and disease control.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos