Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers at UT Southwestern Identify Novel Class of Drugs for Prostate Cancers

Published: Friday, July 05, 2013
Last Updated: Friday, July 05, 2013
Bookmark and Share
Researchers found that they could disrupt androgen receptor signaling using peptidomimetics.

A new study on prostate cancer describes a novel class of drugs developed by UT Southwestern Medical Center researchers that interrupts critical signaling needed for prostate cancer cells to grow.

In men with advanced prostate cancer, growth of cancer cells depends on androgen receptor signaling, which is driven by androgens, such as testosterone.

To thwart tumor growth, most patients with advanced prostate cancer receive drugs that block the production of androgen or block the receptor where the androgen binds.

Unfortunately, such treatments invariably fail and patients die of prostate cancer with their androgen receptor signaling still active and still promoting tumor growth.

In the new study, available online at Nature Communications, a team of researchers led by Dr. Ganesh Raj, associate professor of urology at UT Southwestern, found that they could disrupt androgen receptor signaling using a novel class of drugs called peptidomimetics.

This therapeutic agent consists of an engineered small protein-like chain designed to mimic peptides that are critical for androgen receptor function.

The peptidomimetic agents block the activity of the androgen receptor even in the presence of androgen by attacking the protein in a different spot from where the androgen binds.

“We are hopeful that this novel class of drugs will shut down androgen receptor signaling and lead to added options and increased longevity for men with advanced prostate cancer,” said Dr. Raj, the senior author of the study.

Dr. Raj compared the action that takes place to a lock and key mechanism. In prostate cancer, the androgen receptor (lock) is activated by the androgen (key) resulting in a signal that causes prostate cancer proliferation.

In advanced prostate cancer, despite drugs targeting either the lock (androgen receptor) or the key (androgen production), there can be aberrant keys that open the lock or mutated locks that are always open, resulting in cancer cell proliferation.

Instead of trying to block the lock or the key, peptidomimetics uncouple the lock and key mechanism from the proliferation signal. Thus, even with the androgen receptor activated, the prostate cancer cells do not receive the signal to proliferate and do not grow.

The researchers tested their drug in mouse and human tissue models. The novel drug proved non-toxic and prevented androgen receptor signaling in cancer cells.

The response is highly promising and suggests that peptidomimetic targeting of prostate cancer may be a viable therapeutic approach for men with advanced disease.

Further testing is needed before a drug could move to Phase 1 clinical trials that involve human participants.

“Most drugs now available to treat advanced prostate cancer improve survival rates by three or four months,” Dr. Raj said. “Our new agents may offer hope for men who fail with the current drugs.”

These findings represent the development of a first-in-class agent targeting critical interactions between proteins. Other cellular and disease processes eventually could also be targeted with peptidomimetics, the scientists said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Friday, July 22, 2016
New Method Detects Telomere Length for Research into Cancer, Aging
UT Southwestern Medical Center cell biologists have identified a new method for determining the length of telomeres, the endcaps of chromosomes, which can influence cancer progression and aging.
Friday, July 01, 2016
Enzyme Link Between Excessive Heart Muscle Growth, Cancer Growth
Researchers at UTSW have found that the drugs currently used to inhibit these enzymes in cancer may also be effective in treating enlargement of the heart muscle.
Saturday, April 16, 2016
Treatment of Common Prostate Cancer
Researchers at UTSW have found that the prostate cancer treatments suppress immune response and may promote relapse.
Friday, April 08, 2016
A Metabolic Twist that Drives Cancer Survival
A novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells has been identified.
Friday, April 08, 2016
Novel Metabolic Twist that Drives Cancer Survival
Researchers at CRI at UT Southwestern have identified a novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells.
Thursday, April 07, 2016
Structure of Crucial Enzyme Identified
Researchers at UTSW have determined the atomic structure of an enzyme that plays an essential role in cell division and better treatment of cancer.
Thursday, March 31, 2016
Mutation That Causes Rare Disease
A mutation has been discovered that causes a rare systemic disorder known as XLPDR and confirmed a role for nucleic acids in immune function.
Tuesday, March 29, 2016
Promoting Liver Tissue Regeneration
Researchers at CRI have reported that inactivating a certain protein-coding gene promotes liver tissue regeneration in mammals.
Saturday, March 26, 2016
Lupus Study Shows Precision Medicine’s Potential to Define the Genetics of Autoimmune Disease
Researchers at UT Southwestern have used next-generation DNA sequencing technology to identify more than 1,000 gene variants that affect susceptibility to SLE.
Saturday, March 19, 2016
Researchers Find New Cytoplasmic Role
Researchers at UT Southwestern Medical Center have found new cytoplasmic role for proteins linked to neurological diseases, cancers.
Friday, March 18, 2016
Researchers’ Work Shines LIGHT on how to Improve Cancer Immunotherapy
Researchers at UT Southwestern Medical Center have reported a strategy to make a major advancement in cancer treatment.
Thursday, March 17, 2016
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Tuesday, February 09, 2016
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Thursday, January 28, 2016
UT Southwestern Scientists Synthesize Nanoparticles
Synthetic nanoparticles to deliver tumor-suppressing therapies to damaged livers.
Wednesday, January 27, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Deciphering Inactive X Chromosomes
Untangling the Barr body of inactive X chromosomes valuable for understanding chromosome structure and gene expression.
Micro Disease-Detecting Senor Created
Researchers at McMaster University have created a microscopic disease-detecting sensor that can turn on to detect trace amounts of substances.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Understanding Treatment Resistant Melanoma
Researchers have determined how advanced melanoma becomes resistant; a development toward developing treatments.
Investigating ‘Black Box’ of Human Genetics
Investigations into inactive X chromosomes have shown unusual DNA repeat elements are essential for maintaining 3D structure.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!