Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Nanoparticles, 'pH Phoresis' Could Improve Cancer Drug Delivery

Published: Wednesday, July 10, 2013
Last Updated: Wednesday, July 10, 2013
Bookmark and Share
Researchers have developed a concept to potentially improve delivery of drugs for cancer treatment using nanoparticles.

The concept involves using nanoparticles made of "weak polybases," compounds that expand when transported into environments mimicking tumor cells, which have a higher acidity than surrounding tissues. The researchers used sophisticated modeling to show how the particles would accumulate in regions of higher acidity and remain there long enough to delivery anticancer drugs.

"This phenomenon, which we term pH phoresis, may provide a useful mechanism for improving the delivery of drugs to cancer cells in solid tumor tissues," said You-Yeon Won, an associate professor of chemical engineering at Purdue University.

Solutions with a pH less than 7 are said to be acidic, and those with a higher pH are basic or alkaline. The pH phoresis concept hinges on using synthetic "polymer micelles," tiny drug-delivery spheres that harbor medications in their inner core and contain an outer shell made of a material that has been shown to expand dramatically as the pH changes from alkaline to acidic.

A twofold size increase could result in a similar increase in the efficiency of drug delivery to tumors.

"Such an effect would be a game changer by delivering the proper dose of anticancer drugs inside tumor cells," Won said. "This pH phoresis concept also could be combined readily within other established drug-delivery methodologies, making it potentially practical for medical application."

The concept is described in a research paper that will appear in the Journal of Controlled Release on July 15, and an unedited version appeared online June 19. The paper was written by Won and doctoral student Hoyoung Lee. Findings showed how the micelles' expansion is optimized in the specific pH in tumor cells.

The researchers demonstrated that the highest degree of micelle swelling in tumors needs to occur when there is a pH of about 7.0, plus or minus 0.5, for optimal delivery of drugs to tumor tissue.

"Solid tumors have a significantly lower extracellular pH, about 6.5-6.9, compared to normal tissue, which has an average pH of 7.4," Won said.

The weak polybases in the micelles contain molecules called amines, which are made of nitrogen and hydrogen atoms. The micelles swell at lower pH due to the increased "protonation," or the addition of protons to nitrogen atoms in the amines. Because the protons are positively charged, the like-charged amines repel each other, causing the nanoparticles to expand.

The positive charge slows the movement of micelles out of tumor tissue, which would cause the nanoparticles to accumulate inside the tumor mass long enough to enter tumor cells and release anticancer drugs.

"This concept is straightforward to understand, yet no one recognized it previously," Won said. "And it took us a while to put this description on a mathematical footing. To do that, we had to modify the famous Fick's first law diffusion equation."

The law, derived by physician and physiologist Adolf Fick in 1855, describes how molecules diffuse from regions of high concentration to regions of low concentration.

The micelles also are coated with protective varnish so that they might remain intact long enough to reach tumor sites, where they would expand and then biodegrade.

More research is needed to determine how well the approach could enhance drug delivery, but the pH phoresis concept developed by Won and his student represents a step in developing nanomedicine techniques in drug delivery, he said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Treatment for Pancreatic Cancer
Researchers at Purdue University have shown how controlling cholesterol metabolism in pancreatic cancer cells reduces metastasis.
Tuesday, May 17, 2016
Improving Engineered T-Cell Cancer Treatment
Purdue University researchers may have figured out a way to call off a cancer cell assassin that sometimes goes rogue and assign it a larger tumor-specific "hit list."
Friday, April 22, 2016
Mass Spectrometry Tool Helps Guide Brain Cancer Surgery
A tool to help brain surgeons test and more precisely remove cancerous tissue was successfully used during surgery, according to a Purdue University and Brigham and Women's Hospital study.
Wednesday, July 02, 2014
Helping Genes Get Out of the Starting Blocks Faster
Yeast can quickly adapt to changes in its environment with the help of molecules known as long non-coding RNAs, a Purdue study shows.
Friday, February 21, 2014
Cell-Detection System Promising for Medical Research, Diagnostics
Researchers are developing a system that uses tiny magnetic beads to quickly detect rare types of cancer cells circulating in a patient's blood.
Thursday, October 03, 2013
Purdue Innovation could Improve Personalized Cancer-Care Outcomes
An innovation could improve therapy selection for personalized cancer care by helping specialists better identify the most effective drug treatment combinations for patients.
Friday, August 16, 2013
New Imaging Technology Could Reveal Cellular Secrets
Researchers have married two biological imaging technologies, creating a new way to learn how good cells go bad.
Friday, April 26, 2013
Yeast Study Yields Potential for New Cholesterol, Anti-Fungal Drugs
While studying a mutant strain of yeast, Purdue University researchers may have found a new target for drugs to combat cholesterol and fungal diseases.
Thursday, February 28, 2013
Gene's function May Give New Target for Cancer Drugs
Scientists have determined that a gene long known to be involved in cancer cell formation and chemotherapy resistance is key to proper RNA creation, and could one day lead to new therapies and drug targets.
Thursday, September 13, 2012
Imaging Tool Tracks Carbon Nanotubes in Living Cells
Researchers have demonstrated a new imaging tool for tracking structures called carbon nanotubes in living cells and the bloodstream, which could aid efforts to perfect their use in biomedical research and clinical medicine.
Thursday, December 08, 2011
Genome Sequencing Speeds Ability to Improve Soybeans
Purdue researchers are sequencing the soybean genome to better understand its genes and to improve its characteristics.
Friday, January 15, 2010
Scientific News
ReadCoor Launched to Commercialize 3D Sequencing Tech
ReadCoor will leverage the Wyss Institute’s method for simultaneously sequencing and mapping RNAs within cells and tissues to advance development of diagnostics.
NCI Collaborates with Multiple Myeloma Research Foundation
NCI collaborates with MMRF to incorporate genomic and clinical data into NCI Genomic Data Commons database.
Epigenetic Clock Predicts Life Expectancy
New research finds 5 percent of population ages faster, faces shorter lifespan.
Modified Yeast Shows Plant Response to Key Hormone
Researchers have developed a toolkit based on modified yeast to determine plant responses to auxin.
Death-or-Repair Switch Protein Identified
Researchers have identified a protein that plays a key role in the decision process of cell damage repair or cellular suicide.
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Regulatory RNA Essential to DNA Damage Response
Researchers discover a tumour suppressor is stabilized by an RNA molecule, which helps cells respond to DNA damage.
Wearable Microscope Can Measure Fluorescent Dyes Through Skin
UCLA research could make monitoring disease biomarkers easier and more cost-effective.
Crispr Toolbox Expanded By Protein
Researchers have shown a newly discovered CRISPR protein has two distinct RNA cutting activities.
Genetic Impact of Endurance Training
Research has found that endurance training changes genetic activity in thousands of genes, giving rise to large number of altered RNA variants.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!