Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

CDI Expands MyCell Products Line

Published: Monday, July 15, 2013
Last Updated: Monday, July 15, 2013
Bookmark and Share
Offers access to human disease models and licensing key genetic engineering patents.

Cellular Dynamics International (CDI) has announced that it has expanded its MyCell® Products line, offering access to a number of human disease models and licensing key genetic engineering patents from Life Technologies and Sigma-Aldrich.

CDI’s MyCell Products include custom cell products manufactured using induced pluripotent stem cell (iPSC) technology to make stem cells or differentiated cells from any individual, including those with diseases of interest to pharmaceutical and academic researchers.

CDI’s MyCell Products now offer access to a number of disease models, including cardiomyopathies and arrhythmias, vision disorders, neurological disorders, and muscular dystrophies.

In addition, the company is actively working on expanding its disease model offering, currently working on additional disease models for neurodegenerative disorders and drug-induced liver injury (DILI).

Within the MyCell Products line, CDI maintains the iPSC line of each of the disease models, enabling customers to request manufacture of differentiated cells, such as cardiomyocytes, neurons, hepatocytes, and endothelial cells, for their discovery research.

In addition, CDI has licensed Life Technologies’ GeneArt® Precision TALs (TALENs) and Sigma’s CompoZr® ZFN technologies, which act like genomic scissors to cut DNA in a precise location.

These nuclease technologies facilitate efficient genomic editing by creating double-stranded breaks in DNA at user-specified locations, stimulating the cell’s natural repair process and enabling targeted gene insertions, deletions, or modifications.

CDI will use the TALENs and ZFN technologies to perform genetic engineering specified by the customer, for example to introduce or correct a specific mutation, thus creating human disease models and isogenic controls.

“This expansion of the MyCell Products line is the next step in our growing disease-in-a-dish portfolio and allows our customers more ready access to diseases of interest from our growing catalog of iPSCs,” said Chris Parker, CDI chief commercial officer.

Parker continued, “Through the MyCell Products line, researchers can now access human disease models either through creation of iPSC-derived cells directly from a patient, or through inducing a disease state via use of these TALENs or ZFN technologies.”

Bob Palay, CDI chief executive officer, said, “CDI’s commercial goal has been to provide access to human cells that reproduce human biology, and we see both of these developments as steps toward achieving that goal. We’re pleased to license these nuclease technologies from Life Technologies and Sigma-Aldrich, and the combination of these nuclease technologies with CDI’s iPSC-derived cells creates a new, powerful tool to better understand and target human disease.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Junying Yu, Leading Stem Cell Researcher, Joins Cellular Dynamics International
Dr. Yu’s scientific will help accelerate the company to harness the power of iPS cells to reproducibly differentiate into essential cell types.
Friday, July 24, 2009
Cellular Dynamics International Reprograms Blood Cells into Stem Cells
Findings to be presented at ISSCR Annual Meeting demonstrate that any stored blood sample is a candidate for iPS cell reprogramming.
Wednesday, July 15, 2009
Cellular Dynamics International and Roche Expand Existing Cardiotoxicity Screening Agreement
The two-year collaboration aims to enhance drug safety testing in order to bring promising therapies to patients.
Thursday, July 02, 2009
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!