Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Funds New Grants Exploring Use of Genome Sequencing in Patient Care

Published: Wednesday, July 24, 2013
Last Updated: Wednesday, July 24, 2013
Bookmark and Share
NIH has awarded four grants for up to four years to multidisciplinary research teams to explore the use of genome sequencing in medical care.

The awards total approximately $6.7 million in the first year and, if funding remains available, approximately $27 million in total.

The areas of research being pursued by these new projects include using genome sequencing to inform couples about reproductive risks, determining the genetic causes of childhood developmental delays and communicating findings to parents, and detecting genomic alterations that can lead to cancer. The new grants are funded as part of the National Human Genome Research Institute’s (NHGRI) Clinical Sequencing Exploratory Research (CSER) program. NHGRI is part of NIH.

The new grants expand on the initial CSER program awards given to six research teams in December 2011. The current funding includes approximately $5 million from the National Cancer Institute, also part of NIH.

“Since the first round of CSER program awards were announced in 2011, the use of clinical genome sequencing has seen tremendous growth,” said Bradley Ozenberger, Ph.D., CSER program director and deputy director of the Division of Genomic Medicine at NHGRI. “Genome sequencing has vast potential to uncover new targets for therapy. We’re continuing to learn how best to use genome sequence data to understand disease susceptibility and causation, and to advance treatment.”

The use of clinical genome sequencing has increased due to the advent of more efficient methods for DNA sequencing, but many obstacles remain to its routine use. Some physicians typically lack experience and education in the use of genomic information, said Dr. Ozenberger. At the same time, some patients don’t fully understand what genomic information can tell them. Many people may be reluctant to find out what information resides in their genome, he said.

“It’s not enough to understand the scientific issues related to the medical applications of genomics. Researchers must also examine how best to discuss genome sequencing results and their potential implications with doctors, patients and caregivers,” said Jean McEwen, J.D., Ph.D., program director for the Ethical, Legal and Social Implications program in the Division of Genomics and Society at NHGRI.

The new CSER program grants are awarded to the following groups:

•    Kaiser Foundation Research Institute, Portland, Ore., $8.1 million (pending available funds)

Principal Investigators: Katrina Goddard, Ph.D., and Benjamin Wilfond, M.D., Seattle Children’s Research Institute

Drs. Goddard and Wilfond will lead a project that examines the use of whole-genome sequencing in informing couples, before they conceive a child, about their potential carrier status for genetic disease. They will compare women and their partners who receive preconception genetic testing to those who receive whole-genome sequencing in addition to the testing. Scientists will look for genetic mutations for about 100 rare conditions and expect to enroll 380 people in the trial. Couples with mutations that put children at risk for a condition will work with a genetic counselor and complete surveys to help researchers develop useful approaches to presenting information to patients.

•    Hudson-Alpha Institute for Biotechnology, Huntsville, Ala., $7.66 million (pending available funds)

Principal Investigator: Richard Myers, Ph.D.

Dr. Myers and his colleagues will sequence the genomes of nearly 500 children with developmental delays and other disabilities, along with their parents, in the hopes of discovering genomic alterations behind such disorders. As many as 1 to 3 percent of children worldwide are born with genetic disorders that lead to developmental or intellectual delays or disabilities. The researchers hope to uncover gene alterations that are common to more than one condition and gain insights to whether certain mutations cause milder or more severe cases of some conditions. The scientists plan to provide information on genetic differences to study participants and families and use questionnaires and interviews to better understand the impact of genomic testing results on families.

•    University of Michigan, Ann Arbor, $7.97 million (pending available funds)

Principal Investigator: Arul Chinnaiyan, M.D., Ph.D.

Dr. Chinnaiyan and his team will sequence the genomes of tumors from 500 patients with advanced sarcoma or other rare cancers to discover new information about genomic alterations, with the goal of eventually customizing therapies. Few clinical trials have been conducted in most rare cancers, and scientists would like to know more about the genetic underpinnings of these diseases. Investigators also plan to evaluate the patient consent process, and the delivery and use of genome sequencing results.

•    University of Washington, Seattle, $3 million (pending available funds)

Principal Investigators: Gail Jarvik, M.D., Ph.D., Wylie Burke, M.D., Ph.D., Debbie Nickerson, Ph.D., Peter Tarczy-Hornoch, M.D.

Dr. Jarvik and her colleagues at the University of Washington will lead the coordinating center responsible for pulling together all of the scientific teams, helping to organize studies, interpreting study results and helping groups focus on common goals. The coordinating center team members bring their own expertise in clinical genetics, genome sequencing, bioinformatics and ethics.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
Decoding Ties Between Vascular Disease, Alzheimer’s
NIH consortium uses big data, team science to uncover complex interplay of factors.
Tuesday, March 15, 2016
Researchers Find Link Between Death of Tumor-Support Cells and Cancer Metastasis
Researchers at NIH have found that the lifespan of supportive cells in a tumor may control the spread of cancer.
Tuesday, February 23, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
International Study Reveals New Genetic Clues to AMD
NIH-funded research provides framework for future studies of AMD biology, therapy.
Tuesday, December 22, 2015
Scientific News
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Modified Microalgae Converts Sunlight into Valuable Medicine
A special type of microalgae can soon produce valuable chemicals such as cancer treatment drugs and much more just by harnessing energy from the sun.
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!