Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Funds New Grants Exploring Use of Genome Sequencing in Patient Care

Published: Wednesday, July 24, 2013
Last Updated: Wednesday, July 24, 2013
Bookmark and Share
NIH has awarded four grants for up to four years to multidisciplinary research teams to explore the use of genome sequencing in medical care.

The awards total approximately $6.7 million in the first year and, if funding remains available, approximately $27 million in total.

The areas of research being pursued by these new projects include using genome sequencing to inform couples about reproductive risks, determining the genetic causes of childhood developmental delays and communicating findings to parents, and detecting genomic alterations that can lead to cancer. The new grants are funded as part of the National Human Genome Research Institute’s (NHGRI) Clinical Sequencing Exploratory Research (CSER) program. NHGRI is part of NIH.

The new grants expand on the initial CSER program awards given to six research teams in December 2011. The current funding includes approximately $5 million from the National Cancer Institute, also part of NIH.

“Since the first round of CSER program awards were announced in 2011, the use of clinical genome sequencing has seen tremendous growth,” said Bradley Ozenberger, Ph.D., CSER program director and deputy director of the Division of Genomic Medicine at NHGRI. “Genome sequencing has vast potential to uncover new targets for therapy. We’re continuing to learn how best to use genome sequence data to understand disease susceptibility and causation, and to advance treatment.”

The use of clinical genome sequencing has increased due to the advent of more efficient methods for DNA sequencing, but many obstacles remain to its routine use. Some physicians typically lack experience and education in the use of genomic information, said Dr. Ozenberger. At the same time, some patients don’t fully understand what genomic information can tell them. Many people may be reluctant to find out what information resides in their genome, he said.

“It’s not enough to understand the scientific issues related to the medical applications of genomics. Researchers must also examine how best to discuss genome sequencing results and their potential implications with doctors, patients and caregivers,” said Jean McEwen, J.D., Ph.D., program director for the Ethical, Legal and Social Implications program in the Division of Genomics and Society at NHGRI.

The new CSER program grants are awarded to the following groups:

•    Kaiser Foundation Research Institute, Portland, Ore., $8.1 million (pending available funds)

Principal Investigators: Katrina Goddard, Ph.D., and Benjamin Wilfond, M.D., Seattle Children’s Research Institute

Drs. Goddard and Wilfond will lead a project that examines the use of whole-genome sequencing in informing couples, before they conceive a child, about their potential carrier status for genetic disease. They will compare women and their partners who receive preconception genetic testing to those who receive whole-genome sequencing in addition to the testing. Scientists will look for genetic mutations for about 100 rare conditions and expect to enroll 380 people in the trial. Couples with mutations that put children at risk for a condition will work with a genetic counselor and complete surveys to help researchers develop useful approaches to presenting information to patients.

•    Hudson-Alpha Institute for Biotechnology, Huntsville, Ala., $7.66 million (pending available funds)

Principal Investigator: Richard Myers, Ph.D.

Dr. Myers and his colleagues will sequence the genomes of nearly 500 children with developmental delays and other disabilities, along with their parents, in the hopes of discovering genomic alterations behind such disorders. As many as 1 to 3 percent of children worldwide are born with genetic disorders that lead to developmental or intellectual delays or disabilities. The researchers hope to uncover gene alterations that are common to more than one condition and gain insights to whether certain mutations cause milder or more severe cases of some conditions. The scientists plan to provide information on genetic differences to study participants and families and use questionnaires and interviews to better understand the impact of genomic testing results on families.

•    University of Michigan, Ann Arbor, $7.97 million (pending available funds)

Principal Investigator: Arul Chinnaiyan, M.D., Ph.D.

Dr. Chinnaiyan and his team will sequence the genomes of tumors from 500 patients with advanced sarcoma or other rare cancers to discover new information about genomic alterations, with the goal of eventually customizing therapies. Few clinical trials have been conducted in most rare cancers, and scientists would like to know more about the genetic underpinnings of these diseases. Investigators also plan to evaluate the patient consent process, and the delivery and use of genome sequencing results.

•    University of Washington, Seattle, $3 million (pending available funds)

Principal Investigators: Gail Jarvik, M.D., Ph.D., Wylie Burke, M.D., Ph.D., Debbie Nickerson, Ph.D., Peter Tarczy-Hornoch, M.D.

Dr. Jarvik and her colleagues at the University of Washington will lead the coordinating center responsible for pulling together all of the scientific teams, helping to organize studies, interpreting study results and helping groups focus on common goals. The coordinating center team members bring their own expertise in clinical genetics, genome sequencing, bioinformatics and ethics.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Exploring the Genome of the River Blindness Parasite
Researchers have decoded the genome of the parasite that causes the skin and eye infection known as river blindness.
Wednesday, December 07, 2016
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
Wednesday, December 07, 2016
Protein-Folding Gene Helps Heal Wounds
Researchers identified a protein that dramatically accelerates wound healing in animal models.
Wednesday, November 23, 2016
NIH Researchers Unveil New Wound-Healing Role for Protein-Folding Gene in Mice
The study found that topical treatment of an Hsp60-containing gel dramatically accelerates wound closure in a diabetic mouse model.
Friday, October 28, 2016
Gene Editing Corrects Sickle Cell Mutation
Researchers demonstrate a potential pathway to developing gene-editing treatments for sickle cell disease.
Wednesday, October 26, 2016
NIH Scientists Uncover Genetic Explanation for Frustrating Syndrome
Researchers at NIH have suggested that the multiple alpha tryptase gene copies might underlie health issues that affect a substantial number of people.
Tuesday, October 18, 2016
NIH Commits $6.7 M to Advance DNA, RNA Sequencing Technology
"Can you believe they make DNA sequencers the size of staplers?" asked Meni Wanunu, Ph.D. "Ideas that were crazy twenty years ago are now happening!"
Friday, October 07, 2016
“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
Monday, September 26, 2016
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Wednesday, September 21, 2016
Catalogue of Human Genetic Diversity Expands
The largest data set of human exomes to date has been assembled to better study seqence variants and their consequences.
Wednesday, September 07, 2016
$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Public Support for National Study
Survey shows the majority of respondents support or show willingness for national precision medicine study.
Thursday, August 18, 2016
Schizophrenia, Autism Share Genetic Causes
Monkey brain developmental atlas pinpoints when, where genes activate.
Tuesday, August 16, 2016
How Breast Cancers Resist Chemotherapy
Researchers discovered an unexpected way that breast cancers cells with mutant BRCA1 or BRCA2 genes acquire drug resistance and evade chemotherapies.
Wednesday, August 10, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Personality Traits, Psychiatric Disorders Linked to Specific Genomic Locations
Researchers have unearthed genetic correlations between personality traits and psychiatric disorders.
Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Diabetes Missing Link Discovered
Researchers from the University of Auckland have shown that beta catenin plays a vital role in the control of insulin release from the pancreas.
Study Reveals New Role for Hippo Pathway in Suppressing Cancer Immunity
Hippo pathway signaling regulates organ size by moderating cell growth, apoptosis and stem cell renewal, but dysregulation contributes to cancer development.
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
Gene Editing Yields Tomatoes That Ripen Weeks Earlier
Research team develop method to make tomato plants flower and ripen fruit two weeks faster than current growth rates.
Exploring the Genome of the River Blindness Parasite
Researchers have decoded the genome of the parasite that causes the skin and eye infection known as river blindness.
Gene Therapy Maintains Clotting Factor for Hemophilia Patients
Following a single gene therapy dose, the highest levels of an essential blood clotting factor IX were observed in hemophilia B patients.
Unexpected Role for Epigenetic Enzymes in Cancer
Researchers use epigenetics to identify the role of an enzyme family as regulators of genetic message interpretation in yeast.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!