Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Surprising Mechanism Discovered in Polycystic Kidney Disease

Published: Monday, July 29, 2013
Last Updated: Monday, July 29, 2013
Bookmark and Share
A study has uncovered a new and unexpected molecular mechanism in the development of polycystic kidney disease, or PKD.

PKD is a life-threatening genetic disorder that causes multiple cysts to form on the kidneys — enlarging them, cutting off proper urine flow, and causing kidney failure in half of affected people by age 60. It affects more than 12 million people worldwide.

Cilia are the hair-like structures on the surface of many human cells that can either move things along – dirt out of the lungs, or an egg from the ovary to the uterus – or sense the environment, such as vision in the retina or smell in the nose. Recent research has implicated defects in the sensory cilia — often caused by genetic mutations — in many human diseases, including cancer, cardiac disease, blindness, and kidney disease. In the kidney, disruption of sensory cilia cause kidney cysts.

The polycystin-1 and -2 (also known as PC1 and PC2) proteins are key players in the normal functioning of the kidneys. Earlier research has shown that when they are lost or mutated, cysts grow in the kidneys and cause almost all cases of PKD in humans.

Working in mice, the Yale team found that cysts grew when the cilia were intact but lacked polycystin — but, surprisingly, cysts stopped growing despite the absence of polycystins when the cilia were disrupted or eliminated.

The activity of this pathway, and the timing of the loss of polycystin proteins and the cilia, determined the severity of both early- and adult-onset PKD, the researchers found.

“None of the other pathways discovered so far have proven as universal as the cilia dependent pathway in explaining polycystic kidney disease,” said corresponding author Dr. Stefan Somlo, professor of internal medicine (nephrology) and genetics at Yale School of Medicine. “We found to our surprise that elimination of cilia suppresses cyst growth in all of the genetic models of human PKD.”

Somlo believes that his team’s research could lead to discovery of new targets for therapies to inhibit this cilia-dependent pathway of PKD, and slow cyst growth.

Other authors are Ming Ma and Xin Tian of Yale, Peter Igarashi of the University of Texas Southwestern School of Medicine, and Gregory Pazour of the University of Massachusetts Medical School.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Ovarian Cancer Insight
Study showed tumours release cytokines to attract macrophages, which secrete growth factors that in turn promote tumour growth.
Wednesday, October 19, 2016
New Model for Understanding Human Myeloma
Researchers develop mouse model where mice carry six human genes involved in human tumour growth.
Monday, October 17, 2016
Genes Behind Certain Aggressive Cancers Identified
Researchers have found the genes behind aggressive ovarian and endometrial cancers.
Tuesday, October 11, 2016
Cancer Drug Resistance Runs Deeper Than Single Gene
Study suggests abnormalities in gene networks offer better therapy response prediction than individual genes.
Monday, October 10, 2016
Gene-Editing 'Toolbox' Targets Multiple Genes Simultaneously
Researchers have designed a system that modifies, or edits, multiple genes in a genome at once while minimising unintentional effects.
Thursday, July 28, 2016
Effects Of Maternal Smoking Continue Long After Birth
Yale study shows that maternal smoking is linked to behavioural changes.
Wednesday, June 01, 2016
Gene Testing Now Allows Precision Medicine for Thoracic Aneurysms
Researchers at the Aortic Institute at Yale have tested the genomes of more than 100 patients with thoracic aortic aneurysms, a potentially lethal condition, and provided genetically personalized care.
Monday, July 20, 2015
After a Sip of Milkshake, Genes and Brain Activity Predict Weight Gain
The new study published in The Journal Neuroscience.
Thursday, May 21, 2015
Gene Editing Corrects Mutation In Cystic Fibrosis
Yale researchers successfully corrected the most common mutation in the gene that causes cystic fibrosis, a lethal genetic disorder.
Monday, April 27, 2015
Single-Cell, 42-plexed Protein Analysis Achieved with a New Microchip Technology
A novel microdevice capable of detecting 42 unique immune effector proteins has been developed.
Tuesday, February 17, 2015
New Class of Synthetic Molecules Mimics Antibodies
A Yale University lab has crafted the first synthetic molecules that have both the targeting and response functions of antibodies.
Wednesday, December 24, 2014
Immune Cells get Cancer-Fighting Boost From Nanomaterials
Yale researchers used bundled carbon nanotubes to incubate cytotoxic T cells.
Monday, August 18, 2014
Gene that Causes Obesity-Related Metabolic Syndrome Identified
Yale-led research has identified a genetic mutation responsible for the cluster of cardiovascular risk factors that comprise the obesity-related “metabolic syndrome.”
Friday, May 16, 2014
Tsetse Fly Genome Sequenced
Research opens the door to scientific breakthroughs that could reduce or end African sleeping sickness in sub-Saharan Africa.
Friday, April 25, 2014
Deleting Single Gene Reduces Fat in Mice
By deleting a single gene, researchers at Yale University were able to dramatically reduce fat mass in mice while expanding their lifespan by 20%.
Tuesday, March 25, 2014
Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Drug Target for Triple-Negative Breast Cancer Found
A team of researchers led by UC San Francisco scientists has identified a new drug target for triple-negative breast cancer.
Wrapping up the Genome
Researchers successfully package complete yeast genome using purified components, yielding new insights into genome mechanisms.
Gene Therapy Going Global with Portable Device
Portable 'gene therapy in a box' could make future cancer and HIV cures affordable in developing countries.
Smartphone Laboratory Detects Cancer
Researchers develop low-cost, portable laboratory on a smartphonecapable of analysing multiple samples simultaneously.
Fighting Cancer with Immune Response
New treatment elicits two-pronged immune response that destroys tumors in mice.
Nanomedicine for Breast Cancer Treatment
Using nanoparticles measuring only billionths of a meter in size, doctors are able to deliver drug molecules directly to the affected tissue.
Zika Virus Infection Alters Human and Viral RNA
Researchers have discovered that Zika infections results in human and viral genetic modification.
Cell Metabolism Linked to Spread of Cancer
Scientists discover macrophage metabolism can be attuned to prevent the spread of cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos