Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Suffocating Tumours Could Lead to New Cancer Drugs

Published: Tuesday, July 30, 2013
Last Updated: Tuesday, July 30, 2013
Bookmark and Share
Scientists have discovered a new molecule that prevents cancer cells from responding and surviving when starved of oxygen.

Cancer Research UK scientists at the University of Southampton found that this molecule targets the master switch – HIF-1 – that cancer cells use to adapt to low oxygen levels, a common feature in the disease.

The researchers uncovered a way to stop cancer cells using this switch through an approach called ‘synthetic biology’. By testing 3.2 million potential compounds, made by specially engineered bacteria, they were able to find a molecule that stopped HIF-1 from working.

All cells need a blood supply to provide them with the oxygen and nutrients they require to survive. Cancer tumours grow rapidly and as the tumour gets bigger it outstrips the supply of oxygen and nutrients that the surrounding blood vessels can deliver.

But, to cope with this low-oxygen environment, HIF-1 acts as a master switch that turns on hundreds of genes, allowing cancer cells to survive. HIF-1 triggers the formation of new blood vessels around tumours, causing more oxygen and nutrients to be delivered to the starving tumour, which in turn allows it to keep growing.

Dr Ali Tavassoli, a Cancer Research UK scientist whose team discovered and developed the compound at the University of Southampton, said: “We’ve found a way to target the steps that cancer cells take to survive and we hope that our research will one day lead to effective drugs that can stop cancers adapting to a low oxygen environment, stopping their growth. The next step is to further develop this molecule to create an effective treatment.”

Dr Julie Sharp, senior science information manager at Cancer Research UK, said: “Finding ways to disrupt the tools that cancer cells use to adapt and grow when starved of oxygen has been a hot topic in cancer research, but finding drugs that do this effectively has proved elusive.

“For the first time our scientists have found a way to block a master switch controlling cells response to low levels of oxygen – an important step towards creating drugs that could halt cancer in its tracks.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Winning the Battle against Leukaemia: Positive Early Results in Clinical Trial for DNA Vaccine
Early results of a trial to treat leukaemia with a WT1 DNA vaccine, has shown robust vaccine-specific antibody responses in all vaccinated patients evaluated to date.
Tuesday, December 11, 2012
Scientific News
New CAR T Cell Therapy Using Double Target Aimed at Solid Tumors
Researchers at Penn University have described how antibody, carbohydrate combination could apply to range of cancer types.
Erasing Unpleasant Memories with a Genetic Switch
Researchers from KU Leuven and the Leibniz Institute for Neurobiology have managed to erase unpleasant memories in mice using a 'genetic switch'.
New Method Detects Telomere Length for Research into Cancer, Aging
UT Southwestern Medical Center cell biologists have identified a new method for determining the length of telomeres, the endcaps of chromosomes, which can influence cancer progression and aging.
Assessing the Effectiveness of Genome-Editing Technologies
Researchers have developed a cost-effective and rapid method for assessing edits generated by CRISPR-Cas9 and other genome-editing technologies.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Alzheimer's Genetics Point To New Research Direction
A University of Adelaide analysis of genetic mutations which cause early-onset Alzheimer’s disease suggests a new focus for research into the causes of the disease.
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Fix for 3-Billion-Year-Old Genetic Error
Researchers at The University of Texas at Austin have developed a fix that allows RNA to accurately proofread for the first time.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!