Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New 3-D Colonoscopy Eases Detection of Precancerous Lesions

Published: Thursday, August 01, 2013
Last Updated: Thursday, August 01, 2013
Bookmark and Share
New technology offers three-dimensional images, making it easier to detect precancerous lesions.

MIT researchers have developed a new endoscopy technology that could make it easier for doctors to detect precancerous lesions in the colon. Early detection of such lesions has been shown to reduce death rates from colorectal cancer, which kills about 50,000 people per year in the United States.

The new technique, known as photometric stereo endoscopy, can capture topographical images of the colon surface along with traditional two-dimensional images. Such images make it easier to see precancerous growths, including flatter lesions that traditional endoscopy usually misses, says Nicholas Durr, a research fellow in the Madrid-MIT M+Vision Consortium, a recently formed community of medical researchers in Boston and Madrid.

“In conventional colonoscopy screening, you look for these characteristic large polyps that grow into the lumen of the colon, which are relatively easy to see,” Durr says. “However, a lot of studies in the last few years have shown that more subtle, nonpolypoid lesions can also cause cancer.”

Durr is the senior author of a paper describing the new technology in the Journal of Biomedical Optics. Lead author of the paper is Vicente Parot, a research fellow in the M+Vision Consortium. Researchers from Massachusetts General Hospital (MGH) also participated in the project.

In the United States, colonoscopies are recommended beginning at age 50, and are credited with reducing the risk of death from colorectal cancer by about half. Traditional colonoscopy uses endoscopes with fiber-optic cameras to capture images.

Durr and his colleagues, seeking medical problems that could be solved with new optical technology, realized that there was a need to detect lesions that colonoscopy can miss. A technique called chromoendoscopy, in which a dye is sprayed in the colon to highlight topographical changes, offers better sensitivity but is not routinely used because it takes too long.

“Photometric stereo endoscopy can potentially provide similar contrast to chromoendoscopy,” Durr says. “And because it’s an all-optical technique, it can give the contrast at the push of a button.”

Originally developed as a computer vision technique, photometric stereo imaging can reproduce the topography of a surface by measuring the distances between multiple light sources and the surface. Those distances are used to calculate the slope of the surface relative to the light source, generating a representation of any bumps or other surface features.

However, the researchers had to modify the original technology for endoscopy because there is no way to know the precise distance between the tip of the endoscope and the surface of the colon. Because of this, the images generated during their first attempts contained distortions, particularly in locations where the surface height changes gradually.

To eliminate those distortions, the researchers developed a way to filter out spatial information from the smoothest surfaces. The resulting technology, which requires at least three light sources, does not calculate the exact height or depth of surface features but creates a visual representation that allows the colonoscopist to determine if there is a lesion or polyp.

“What is attractive about this technique for colonoscopy is that it provides an added dimension of diagnostic information, particularly about three-dimensional morphology on the surface of the colon,” says Nimmi Ramanujam, a professor of biological engineering at Duke University who was not part of the research team.

The researchers built two prototypes — one 35 millimeters in diameter, which would be too large to use for colonoscopy, and one 14 millimeters in diameter, the size of a typical colonoscope. In tests with an artificial silicon colon, the researchers found that both prototypes could create 3-D representations of polyps and flatter lesions.

The new technology should be easily incorporated into newer endoscopes, Durr says. “A lot of existing colonoscopes already have multiple light sources,” he says. “From a hardware perspective all they need to do is alternate the lights and then update their software to process this photometric data.”

The researchers plan to test the technology in human patients in clinical trials at MGH and the Hospital Clinico San Carlos in Madrid. They are also working on additional computer algorithms that could help to automate the process of identifying polyps and lesions from the topographical information generated by the new system.

The research was funded by the Comunidad de Madrid through the Madrid-MIT M+Vision Consortium.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Fix for 3-Billion-Year-Old Genetic Error
Researchers at The University of Texas at Austin have developed a fix that allows RNA to accurately proofread for the first time.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Revealing the Genetic Causes of Bowel Cancer
A landmark study has given the most detailed picture yet of the genetics of bowel cancer — the UK's fourth most common cancer.
The Epigenetic Influences of Chronic Pain
Researchers at Drexel University College of Medicine are aiming to identify new molecular mechanisms involved in pain.
Fighting Resistant Blood Cancer Cells
Biologists present new findings on chronic myeloid leukemia and possible therapeutic approaches.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
Mothers Obesity Could be Passed on in mtDNA
Obesity can predispose offspring in multiple generations to metabolic problems.
New Imaging Method Reveals Nanoscale Details about DNA
Enhancement to super-resolution microscopy shows orientation of individual molecules, providing a new window into DNA’s structure and dynamics.
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!