Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Advance in Understanding Genome Reproduction

Published: Thursday, August 01, 2013
Last Updated: Thursday, August 01, 2013
Bookmark and Share
Researchers have provided new insight into how chromosome integrity is threatened each time a cell grows and divides, helping to underpin our knowledge of healthy aging.

Dr Christian Rudolph, now at the School of Health Sciences and Social Care at Brunel University, London, and Professor Robert Lloyd FRS at the University of Nottingham's Centre for Genetics and Genomics discovered that one major threat comes from the cell's own machinery for duplicating chromosomes prior to cell division. The research, which has just been published in the journal Nature, also identified some of the control measures that keep this threat at bay.

For each cycle of growth and division, millions of DNA base pairs have to be unwound and copied to duplicate chromosomes. Restricting the initiation of this replication to specific chromosome sites called origins is thought to be key to the orderly progression of subsequent events.

The two strands of the DNA double helix are locally unwound at these origins, opening a branch point at which an array of proteins are then assembled to form what is called a replication fork. Each fork motors along the DNA, unwinding and copying each strand as it proceeds until it meets the end of a chromosome or, more often, collides with another fork coming the other way.

It was generally assumed that the forks simply stop and dissociate at this stage enabling the cell to put the finishing touches to the copied DNA. However, from the new research it now appears that fork collisions often create new branch points in the DNA.

These branch points mimic features of unwound replication origins and thus have the potential to trigger assembly of new forks that proceed to re-replicate the already replicated DNA.

"We found that in the bacterium Escherichia coli, this re-replication is normally limited by the combined actions of RecG protein and enzymes that digest single-stranded DNA" said Dr Rudolph.

"Working together, these factors are capable of eliminating the new DNA branches before they can establish forks. When one or other of these factors is missing, replication initiates with high frequency wherever forks collide; when all are eliminated, the cells die, demonstrating that the failure to bring replication to a timely end can have catastrophic consequences."

"My research group had been studying RecG for more than 20 years," said Professor Lloyd, "and we had already identified RecG as an important player in genome maintenance. But this new discovery, which emerged from studies conducted initially by Dr Rudolph while at Nottingham and now continued at Brunel, came as a surprise. It raises questions about what happens in other organisms."

In humans, cells initiate replication at hundreds of initiation sites, leading to hundreds of fork collisions with every cycle of cell division. It will now be important to investigate whether fork collisions have similar potential consequences for these cells and if so to find out what factors keep such events at bay.

"After all," said Professor Lloyd, "mistakes made during the process of chromosome replication often trigger genetic instability, a well-recognised hallmark of cancer."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Expanding the DNA Alphabet: 'Extra' DNA Base Found to be Stable in Mammals
A rare DNA base, previously thought to be a temporary modification, has been shown to be stable in mammalian DNA, suggesting that it plays a key role in cellular function.
Thursday, June 25, 2015
Researchers Use ‘Big Data’ Approach to Map the Relationships Between Human and Animal Diseases
EID2 database used to prevent and tackle disease outbreaks around the globe.
Thursday, July 17, 2014
TGAC at the Forefront of Next Generation Sequencing Capability
The Genome Analysis Centre adds two Illumina HiSeq 2500 machines to its platform suite.
Thursday, June 26, 2014
£12M for Synthetic Biology Facilities and Training
The UK Research Councils, led by the BBSRC, will award £10M to establish five centres for DNA synthesis across the UK to further develop the UK's research base in synthetic biology.
Monday, April 07, 2014
Scientists identify ‘long distance scanner’ for DNA damage
BBSRC-funded scientists at the University of Bristol have discovered that a mechanism for preventing mutation within important genes involves long distance scanning of DNA by a molecular motor protein.
Wednesday, February 26, 2014
UK Establishes Three New Synthetic Biology Research Centres
Bristol, Nottingham and a Cambridge/Norwich partnership will be UK centres for synthetic biology.
Friday, January 31, 2014
New Chromosome Map Points the Way Through Campylobacter’s Genetic Controls
The Institute of Food Research has produced a new map of the Campylobacter genome, showing the points where all of this pathogenic bacteria's genes are turned on.
Wednesday, November 13, 2013
BBSRC Invests £10 M in Synthetic Biology
The investment has been allocated to the fund by the BBSRC in response to the 2012 Synthetic Biology Roadmap, which sets out plans to harness opportunities in this area.
Thursday, November 07, 2013
A Community Based Approach for Tackling the Post-Genomic Data Deluge
Correspondence highlights the benefits of a community approach to gathering data that can help improve our understanding of the functions of genes.
Monday, October 14, 2013
‘X-Shape’ Not True Picture of Chromosome Structure, New Imaging Technique Reveals
First 3D pictures of chromosome structure revealed.
Friday, September 27, 2013
Moving Genes have Scientists Seeing Spots
An international team of scientists has perfected a way of watching genes move within a living plant cell.
Wednesday, September 11, 2013
£60,000 Competition to Recognise Innovative Scientists Launched by BBSRC
Innovator of the Year 2014 competition launched by BBSRC to recognise and reward scientist's whose excellent science and innovations are delivering real world impact.
Friday, July 12, 2013
Babraham Scientists Establish Cancer-Focussed Collaboration with AstraZeneca
Partnership aims to advance cancer research and develop and evaluate new therapeutic strategies to tackle prostate and pancreatic cancers.
Wednesday, July 10, 2013
Pig Disease that Costs Millions Targeted by Genetic Study
A fast mutating virus that affects pig herds and costs pork producers millions of pounds each year is being targeted by scientists.
Thursday, April 11, 2013
Scientists Identify Brain’s ‘Molecular Memory Switch’
Common fruit fly key to discovery as to how memories are written into brain cells.
Wednesday, April 03, 2013
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!