Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Gene Sequencing Targets Witchweed, Parasitic Plants

Published: Thursday, August 01, 2013
Last Updated: Thursday, August 01, 2013
Bookmark and Share
Using gene sequencing and transfer to break the stranglehold of witchweed and other parasitic plants that annually cause billions of dollars in crop losses around the world.

Joining forces through the Parasitic Plant Genome Project, funded by the National Science Foundation, UC Davis Professor John Yoder and colleagues are identifying the genome-wide changes that have evolved to equip this intriguing but often devastating group of wild plants to develop their parasitic lifestyle.

“We know that parasitic plants evolved from non-parasitic plants, so we take an evolutionary approach and ask, ‘What are the genetic changes that make a plant parasitic, and what are the genetic consequences once a plant becomes a parasite?’” said Yoder, whose lab in the UC Davis Department of Plant Sciences is contributing to the Parasitic Plant Genome Project. “The next stage is to identify critical parasite genes and pathways and use this information to develop parasite-resistant crops,” he said.

In a May cover article for the journal Molecular Plant-Microbe Interactions, Yoder and co-author Pradeepa C.G. Bandaranayake of the University of Peradeniya, Sri Lanka, demonstrated a new strategy for engineering within host plants a killer DNA molecule that is toxic to at least one species of Orobanchaceae. This family of almost 2,000 parasitic plant species includes some of the world’s worst agricultural pests, notably Striga or “witchweed” and Orobanche, also known as “broomrape.”

Striga, for example, has a reputation for covertly destroying crop fields. By the time the purple flowers of this parasitic weed have bloomed, the field is already ruined. Removed from the soil, Striga can return decades later through dormant seeds. The infestations are particularly devastating to staple crops like rice, maize, millet and sorghum in sub-Saharan Africa and the Middle East.

Because Striga and Orobanche can be so invasive, researchers in the Yoder lab instead use in their studies the closely related parasitic plant Triphysaria, or “dwarf owls clover,” which is native to California.

The recently published study showed that an inhibitory RNA gene-transfer technique could reduce by 80 percent the viability of Triphysaria roots after the parasite has attached to the genetically modified host.

A $3.4 million grant, recently awarded by the National Science Foundation to the Parasitic Plant Genome Project, will enable Yoder and his research colleagues to conduct controlled laboratory experiments that will be followed by field testing in Israel, Kenya or Morocco.

“The next step will be to take the gene that has proven effective against Triphysaria and put it into crops, in particular tomato and maize, to test it against Orobanche and Striga and see if it actually works against real weeds,” Yoder said.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
Researchers Change Cell Types by Flipping a Single Switch
New findings have identified a method for changing one cell type into another in a process called forced transdifferentiation.
Friday, December 06, 2013
Scientists Pinpoint Cell Type and Brain Region Affected by Gene Mutations in Autism
UCSF-led study zeroes in on when and where disrupted genes exert effects.
Tuesday, November 26, 2013
Digging Deeper Into Cancer
What a pathologist looks for in a Pap test sample, but hopes not to find, are oddly shaped cells with abnormally large nuclei. The same is true for prostate and lung cancer biopsies.
Tuesday, November 19, 2013
Nanotech Method Show Promise Against Pancreatic Cancer
Researchers at UCLA's Jonsson Comprehensive Cancer Center have developed a new technique for fighting deadly and hard-to-treat pancreatic cancer.
Monday, November 18, 2013
Researchers Un-Junking Junk DNA
A study shines a new light on molecular tools our cells use to govern regulated gene expression.
Wednesday, November 13, 2013
Fast-Mutating DNA Sequences Shape Early Development
What does it mean to be human? According to scientists the key lies, ultimately, in the billions of lines of genetic code that comprise the human genome.
Wednesday, November 13, 2013
Did Inefficient Cellular Machinery Evolve to Fight Viruses and Jumping Genes?
UCSF scientist poses new theory on origins of eukaryotic gene expression.
Monday, November 11, 2013
Powerful Anti-Cancer Compound Safely Delivered
Researchers have discovered a way to effectively deliver staurosporine (STS).
Tuesday, October 22, 2013
New Insights into How Proteins Regulate Genes
Researchers have developed a new way to parse and understand how special proteins called "master regulators" read the genome, and consequently turn genes on and off.
Monday, October 21, 2013
Scientific News
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
UC San Diego Team Up with Illumina to Speed-Read Your Microbiome
Data analysis app accelerates studies aimed at using microbes to predict, diagnose and treat human diseases.
Paving the Way for Diamonds to Trace Early Cancers
Researchers from the University of Sydney reveal how nanoscale 'diamonds' can light up early-stage cancers in MRI scans.
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos