Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Wired for Change

Published: Monday, August 05, 2013
Last Updated: Sunday, August 04, 2013
Bookmark and Share
First steps of gene regulation evolution revealed.

A study of gene expression led by scientists at the EMBL-European Bioinformatics Institute (EMBL-EBI) and the University of Cambridge has revealed the first steps of evolution in gene regulation in mice.

Published in the journal Cell, the research has implications for the study of differences in gene regulation between people.

“We found an impressive amount of variation between these apparently very similar mice in terms of transcription-factor binding, which is an important indicator of gene-regulation activity,” says Paul Flicek of EMBL-EBI.

Flicek continued, “Often you’ll see a specific combination of these transcription factors acting in concert - and it was fascinating for us to see just how important these combinations are. They’re much more likely to be conserved over the course of evolution than whatever DNA sequence they might be binding to.”

The team studied gene expression in five very closely related mouse species in order to pinpoint changes at the very earliest stages of evolution.

To do this, they compared the way that three transcription factors (TFs) bind to genes to control if they’re turned on or off in liver cells in the different mouse species.

“By looking at mice that are very closely related to each other, we were able to capture a snapshot of what regulatory evolution is happening,” explains Duncan Odom of the University of Cambridge. “That’s important because it’s much harder to see how something has evolved when you don’t have a clear picture of the starting point.”

Say users wanted to know how an orange tree evolved, but they could only compare it to an elm or oak. They’d have greater insight into how an orange tree evolved if they could compare it to much more closely related plants like grapefruit and lemons, which could give insight into how each came from an ancestral citrus plant.

In this study, instead of comparing leaf and fruit shapes, the team looked at gene regulation in mice that had only recently diverged from one another.

They demonstrated that TFs work in clusters that are conserved in order to ensure genetic and evolutionary stability.

The researchers contrasted their findings with gene-regulation data from another model organism, Drosophila, to see where the similarities lay.

They found that there were a lot more differences between closely related mouse strains than there are between distantly related fruit-fly strains.

“Mammals have lots of DNA kicking around that doesn’t code for proteins, while fruit flies have relatively little. So a mouse’s regulatory wiring will just have a lot more wiggle room than a fruit fly’s,” says Paul. “That gives us a clearer picture of what we can expect to learn about mammalian genetic regulation from fruit flies.”

The study could help scientists understand how gene regulation differs from one person to the next, explaining why genes that cause disease in some people don’t have that effect in others.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Finding Links and Missing Genes
A catalogue of large-scale genetic changes around the world.
Tuesday, October 06, 2015
Ages Apart
Multifaceted approach measured how brain and liver age differently.
Saturday, September 19, 2015
Double Act: How a Single Molecule Can Attract and Repel Growing Brain Connections
The 3D structure of Netrin-1 bound to DCC shows Netrin-1 binds to two DCC molecules in different ways.
Saturday, August 09, 2014
Cancer by Remote-Control
Overlooked DNA shuffling drives deadly paediatric brain tumour.
Tuesday, June 24, 2014
Rigged to Explode?
Inherited mutation links exploding chromosomes to cancer.
Wednesday, April 11, 2012
The Human Genome’s Breaking Points
Comprehensive catalogue uncovers genetic sequence of large-scale differences between human genomes.
Wednesday, February 16, 2011
EMBL Scientists Uncover Counterpart of Cerebral Cortex in Marine Worms
Findings give an idea of what the most ancient higher brain centres looked like, and what our distant ancestors used them for.
Friday, September 03, 2010
Making Enough Red Blood Cells
EMBL scientists identify molecules that ensure red blood cell production.
Monday, June 14, 2010
EMBL-EBI Researchers Present Global Map of Human Gene Expression
The full analysis behind the view of the genetic activities determining our appearance, function and behavior is published in Nature Biotechnology.
Thursday, April 08, 2010
New Training and Conference Centre for the Life Sciences at EMBL in Heidelberg
The new Center will form a central European platform where scientists from across the world can meet to exchange ideas and their best practices.
Thursday, March 11, 2010
EMBL Scientists Present Genetic Catalogue of Our Gut Flora
A study shows that, at 3.3 million, microbial genes in our gut outnumber previous estimates for the whole of the human body.
Monday, March 08, 2010
EMBL Scientists Uncover the Gene Responsible for Keeping Females Female
Study, published in Cell, challenges the long-held assumption that the development of female traits is a default pathway.
Friday, December 11, 2009
EMBL Scientists Take New Approach to Predict Gene Expression
The new approach enables the accurate prediction of when and where different CRMs will be active.
Wednesday, November 18, 2009
Scientists Identify Cholesterol-Regulating Genes
EMBL researchers identified 20 genes that are involved in the process of regulating cholesterol levels in the body.
Monday, July 13, 2009
European Centre of Excellence for Mouse Biology Celebrates its 10th Anniversary
Scientists investigating basic research topics have generated mouse models of over 20 different human diseases over the past 10 years.
Wednesday, July 01, 2009
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Tissue Damage Is Key for Cell Reprogramming
Researchers have shown tissue damage is important for cells to return to an embryonic state for cell reprogramming.
Improving Drug Production with Computer Model
A model has been developed that can be used to improve and accelerate the production of biotherapeutics, cancer drugs, and vaccines.
New Form of Autism Found
An international team of researchers have identified a new form of syndromic autism.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
Secret Phenotypes: Disease Devils in Invisible Details
Algorithmic deep phenotyping exposes masses of hidden traits and possible subtle genetic connections relevant to unseen influences on disease.
Hunting the Missing Link Between Genetics and the Environment
The International Phenome Centre Network (IPCN) works to transform healthcare through phenomics - the dynamic interactions between our genes and our environment.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!