Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

The Epigenome Differentiates the Different Human Populations

Published: Monday, August 05, 2013
Last Updated: Monday, August 05, 2013
Bookmark and Share
Establishing what differentiates us from our neighbors, our friends or strangers from distant countries.

For years we know that there are genetic differences among different human populations that contribute to their appearance and to a different susceptibility to disease.

These small genetic differences between healthy individuals are called "polymorphisms". The group of Manel Esteller, director of the Programme of Epigenetics and Cancer Biology at the Institute for Biomedical Research of Bellvitge, ICREA researcher and professor of genetics at the University of Barcelona, described today in the prestigious international biomedical journal Genome Research the existence of epigenetic differences between different human populations. That is to say, we are not only different by our DNA (genome) but also by the different regulation of this DNA (epigenome).

"We have studied the epigenomes of three hundred healthy individuals of three large human populations (United States Caucasians, Asians of the chinese ethnic group Han and sub-Saharan Africans) and we have found epigenetic differences that allows us to identify each group of humans"- explains Manel Esteller -"There are genes that are more or less active (due to different levels of the epigenetic mark called DNA methylation) according to the studied population group.

The target genes of these differences between humans are found in all the cellular pathways, but it is worth noting those related with the pigmentation of the skin and the different resistance to infections due to various pathogenic microorganisms, such as the virus (Hepatitis B and HIV) and bacteria (Escherichia coli and Shigella).

This latter finding would help to explain the different tendency to develop a disease among people of different geographic origin."

 The discovery has important implications for explaining the richness and diversity of the different human populations that can no longer be attributed only to a different genome, but also to a different epigenome. The speed and reversability of the epigenetic changes in the genome could also explain how occur the necessary changes in our cells and tissues when populations migrate from one territory to another. In evolutionary terms it provides clues to understand the rapid adaptation to the environment of the first humans who dispersed from the Horn of Africa all over  the planet.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Keeping Growth in Check
Ribosomal proteins RPL5 and RPL11 play an essential role in normal cell proliferation.
Friday, December 13, 2013
Key Role of a Protein in the Segregation of Genetic Material During Cell Division
Researchers at IDIBELL have reported an article which delves into the regulator mechanisms of mitosis.
Wednesday, December 11, 2013
Discovered a Mechanism that Induces Migration of Tumor Cells in Liver Cancer
Coordinated overactivation of TGFb and CXCR4 signaling pathways confer migratory properties to the hepatocellular carcinoma cells.
Wednesday, November 06, 2013
Researchers Discover the Genetic Signature of Highly Aggressive Small Lung Tumors
A study conducted by the IDIBELL allows to identify this type of cancer at an early stage and adapt the treatment.
Thursday, October 03, 2013
Discovered Epigenetic Alterations in the Brain of Alzheimer's Patients
Alzheimer disease is becoming a major health problem in Western societies, exacerbated by the progressive aging of the population.
Monday, September 16, 2013
High Levels of RANK Protein Interferes with the Differentiation of Mammary Cells
Levels of this protein increase with age, which could explain the increase in breast cancer risk associated with age.
Wednesday, September 11, 2013
Discovered a Future Therapeutic Target for Lung Cancer Treatment
One of the goals of research in cancer genetics and molecular biology is to get an "on demand" treatment, with maximum effect and minimal toxicity.
Monday, July 22, 2013
Brain Epigenome Changes from Birth to Adolescence
Experience of parents with their children and teachers with their students demonstrate how kids change their behaviours and knowledge from childhood to adolescence.
Friday, July 05, 2013
Discovered the Role of Noncoding 5S rRNA in Protecting the p53 Tumor Suppressor Gene
Over 50% of tumors are associated with mutations in p53.
Thursday, July 04, 2013
A Gene Conserved from Worms to Humans Opens the Door to new Therapeutics
Gene shows promising therapeutic strategies in cancer and in some types of blindness.
Friday, June 21, 2013
An Epigenetic Change Causes the Block of Antitumor Genes
Healthy cells live in a delicate balance between growth-promoting genes (oncogenes) and those who restrain it (anti-oncogenes or tumor suppressor genes).
Wednesday, June 12, 2013
Identified a Key Protein in Maintaining the Identity of B Lymphocytes
This finding could be useful for the study of blood diseases such as lymphoma and leukemia.
Monday, June 10, 2013
Found in Amish a Genetic Mutation Causing Mental Retardation Very Similar to Angelman Syndrome
It is the first time that associates a mutation in HERC2 with human disease.
Wednesday, March 20, 2013
Epigenetic Mechanism through which Protein SirT2 Regulates Cell Cycle Progression and Genomic Stability
The study of IDIBELL researchers confirms antitumor properties of sirtuin 2.
Wednesday, March 20, 2013
Manel Esteller, ''if the Alphabet is Genetics, Spelling is Epigenetics''
Why don’t identical twins have the same disease at the same time? Why do two cats who share the same DNA have different spots? The answer is in epigenetics.
Friday, November 30, 2012
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!