Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Data Reveal Extent of Genetic Overlap Between Major Mental Disorders

Published: Wednesday, August 14, 2013
Last Updated: Wednesday, August 14, 2013
Bookmark and Share
Schizophrenia, bipolar disorder share the most common genetic variation.

The largest genome-wide study of its kind has determined how much five major mental illnesses are traceable to the same common inherited genetic variations. Researchers funded in part by the National Institutes of Health found that the overlap was highest between schizophrenia and bipolar disorder; moderate for bipolar disorder and depression and for ADHD and depression; and low between schizophrenia and autism. Overall, common genetic variation accounted for 17-28 percent of risk for the illnesses.

“Since our study only looked at common gene variants, the total genetic overlap between the disorders is likely higher,” explained Naomi Wray, Ph.D.  , University of Queensland, Brisbane, Australia, who co-led the multi-site study by the Cross Disorders Group of the Psychiatric Genomics Consortium (PGC), which is supported by the NIH’s National Institute of Mental Health (NIMH). “Shared variants with smaller effects, rare variants, mutations, duplications, deletions, and gene-environment interactions also contribute to these illnesses.”

Dr. Wray, Kenneth Kendler, M.D.  , of Virginia Commonwealth University, Richmond, Jordan Smoller, M.D.  , of Massachusetts General Hospital, Boston, and other members of the PGC group report on their findings August 11, 2013 in the journal Nature Genetics.

“Such evidence quantifying shared genetic risk factors among traditional psychiatric diagnoses will help us move toward classification that will be more faithful to nature,” said Bruce Cuthbert, Ph.D., director of the NIMH Division of Adult Translational Research and Treatment Development and coordinator of the Institute’s Research Domain Criteria (RDoC) project, which is developing a mental disorders classification system for research based more on underlying causes.

Earlier this year, PGC researchers — more than 300 scientists at 80 research centers in 20 countries — reported the first evidence of overlap between all five disorders. People with the disorders were more likely to have suspect variation at the same four chromosomal sites. But the extent of the overlap remained unclear. In the new study, they used the same genome-wide information and the largest data sets currently available to estimate the risk for the illnesses attributable to any of hundreds of thousands of sites of common variability in the genetic code across chromosomes. They looked for similarities in such genetic variation among several thousand people with each illness and compared them to controls — calculating the extent to which pairs of disorders are linked to the same genetic variants.

The overlap in heritability attributable to common genetic variation was about 15 percent between schizophrenia and bipolar disorder, about 10 percent between bipolar disorder and depression, about 9 percent between schizophrenia and depression, and about 3 percent between schizophrenia and autism.

The newfound molecular genetic evidence linking schizophrenia and depression, if replicated, could have important implications for diagnostics and research, say the researchers. They expected to see more overlap between ADHD and autism, but the modest schizophrenia-autism connection is consistent with other emerging evidence.

The study results also attach numbers to molecular evidence documenting the importance of heritability traceable to common genetic variation in causing these five major mental illnesses. Yet this still leaves much of the likely inherited genetic contribution to the disorders unexplained — not to mention non-inherited genetic factors. For example, common genetic variation accounted for 23 percent of schizophrenia, but evidence from twin and family studies estimate its total heritability at 81 percent. Similarly, the gaps are 25 percent vs. 75 percent for bipolar disorder, 28 percent vs. 75 percent for ADHD, 14 percent vs. 80 percent for autism, and 21 percent vs. 37 percent for depression.

Among other types of genetic inheritance known to affect risk and not detected in this study are contributions from rare variants not associated with common sites of genetic variation. However, the researchers say that their results show clearly that more illness-linked common variants with small effects will be discovered with the greater statistical power that comes with larger sample sizes.

“It is encouraging that the estimates of genetic contributions to mental disorders trace those from more traditional family and twin studies. The study points to a future of active gene discovery for mental disorders” said Thomas Lehner, Ph.D., chief of the NIMH Genomics Research Branch, which funds the project.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
NIH Study Identifies Gene Variant Linked to Compulsive Drinking
Mice carrying the Met68BDNF gene variant would consume excessive amounts of alcohol.
Tuesday, July 21, 2015
In Blinding Eye Disease, Trash-Collecting Cells Go Awry, Accelerate Damage
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Friday, July 03, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
NCI-MATCH Trial will Link Targeted Cancer Drugs to Gene Abnormalities
Precision medicine trial will open to patient enrollment in July.
Tuesday, June 09, 2015
A New Role for Zebrafish: Larger Scale Gene Function Studies
A relatively new method of targeting specific DNA sequences in zebrafish could dramatically accelerate the discovery of gene function and the identification of disease genes in humans.
Monday, June 08, 2015
NIH Researchers Pilot Predictive Medicine by Studying Healthy People’s DNA
New study sequence the genomes of healthy participants to find “putative,” or presumed, mutations.
Friday, June 05, 2015
Linking Targeted Cancer Drugs to Gene Abnormalities
Investigators at the NIH have announced a series of clinical trials that will study drugs or drug combinations that target specific genetic mutations.
Wednesday, June 03, 2015
Scientists Create Mice with a Major Genetic Cause of ALS and FTD
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Friday, May 22, 2015
Mice With a Major Genetic Cause of ALS and FTD Created
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Thursday, May 21, 2015
New Insights into How DNA Differences Influence Gene Activity, Disease Susceptibility
NIH-funded pilot study provides a new resource about variants across the human genome.
Friday, May 08, 2015
Souped-up Remote Control Switches Behaviors On-and-Off in Mice
BRAIN Initiative yields chemical-genetic tool with push-pull capabilities.
Thursday, May 07, 2015
NIH-funded Study Points Way Forward for Retinal Disease Gene Therapy
Benefits for Leber congenital amaurosis peak after one to three years, then diminish.
Tuesday, May 05, 2015
Possible Treatment for Lethal Pediatric Brain Cancer
NIH-funded preclinical study suggests epigenetic drugs may be used to treat leading cause of pediatric brain cancer death.
Tuesday, May 05, 2015
Statement on NIH Funding of Research Using Gene-Editing Technologies in Human Embryos
Researchers modify the gene responsible for a potentially fatal blood disorder using CRISPR/Cas9 technology.
Saturday, May 02, 2015
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!