Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Rice Writes Rules for Gene-Therapy Vectors

Published: Thursday, August 15, 2013
Last Updated: Thursday, August 15, 2013
Bookmark and Share
Researchers compute, then combine benign viruses to fight disease.

Rice University researchers are making strides toward a set of rules to custom-design Lego-like viral capsid proteins for gene therapy.

A new paper by Rice scientists Junghae Suh and Jonathan Silberg and their students details their use of computational and bioengineering methods to combine pieces of very different adeno-associated viruses (AAVs) to create new, benign viruses that can deliver DNA payloads to specific cells.

The research appears this month in the American Chemical Society journal ACS Synthetic Biology.
AAVs are found in nature and commonly infect humans but cause no disease. That makes them good candidates to serve as carriers that target cells and deliver genes to treat diseases.

The team, which included graduate student and lead author Michelle Ho and undergraduates Benjamin Adler and Michael Torre, wants to define rules to design a variety of viruses that deliver therapeutic genes. They used computer models to find likely AAV candidates for recombination and then tested the model predictions by engineering 17 unique virus capsid proteins and evaluating their ability to fold and assemble into capsid-encased viruses.

Gene therapy shows promise in the treatment of not only genetic disorders but also cancer and cardiovascular diseases, said Suh, an assistant professor of bioengineering at Rice’s BioScience Research Collaborative.

“But you need a mechanism to get the correct gene into the human body and to the target cells,” she said. “To do that, people use gene vectors, and viruses encompass the largest category of vectors. They’ve naturally evolved to deliver genes into the body. Our goal is to reprogram them to target specific organs or tissues.

“The big challenge is to go about this in a rational manner,” she said. “People have done a lot of work to solve the structure of viruses. We know what they look like. The question is: How can we use that information to guide the design of our viral vectors?”

The team’s answer starts with the “SCHEMA” algorithm they adapted to predict how parts of very large viruses can recombine by homing in on the viral protein sequences that work well together.
Silberg, an associate professor of biochemistry and cell biology, said approaches to virus design can lean either toward brute force – “Let’s make 1,000 of them and maybe we’ll get lucky” – or purely computational, where a biophysicist will try to predict the role of small changes to the virus capsid.

“We’re working on a hybrid approach,” he said. “Instead of making a random library (of viruses) or computationally designing a single virus, which has a low frequency of working, we’re trying to make smart libraries. We’re learning to adapt computer programs used for small proteins with a few thousand atoms for viruses with more than 100,000 atoms.”

Rather than target mutations in particular viruses, the researchers used the program to compare parts from different but related viruses to see if they would combine together to form new viruses.
“We’re treating them like Legos,” Silberg said. “We’re taking distantly related viruses that nature might not recombine very efficiently and looking for self-contained pieces of these proteins that can be swapped.”

The “parent” viruses were AAV serotype 2, which Suh said is the most commonly studied for gene therapy today, and AAV serotype 4. “They’re part of the same virus family, but genetically, AAV4 is one of the most different from AAV2.”

She said it has been difficult for researchers in the past to rationally make chimeras – one organism that combines parts of two or more genetically distinct elements – from these viruses using traditional techniques.

But Suh’s lab confirmed the chimeric structures predicted by the computer models could be made into real hybrid viruses. Now the challenge is to make a much larger library of chimeric viruses to establish a statistically solid set of guidelines.

“We want to know how to make a more stable virus, or a virus that switches its conformation after it enters a cell,” Silberg said.

“And we want to know how to make one that goes not only just to the brain, but to a specific part of the brain to target a neurodegenerative disease,” Suh added. “The bottom line is that we want these rules.”

Silberg said the researchers had expected to confirm that the SCHEMA algorithm could efficiently predict recombinations that could deliver cargo to cells. “But we also learned something really surprising: that you can beat these viruses up a lot more than you can small proteins, and they still assemble into large virus particles,” he said. “It’s really interesting that viruses fundamentally seem to tolerate the kind of mutation we’re doing.”

The Keck Center of the Gulf Coast Consortia Nanobiology Interdisciplinary Graduate Training Program (through a grant from the National Institute of Biomedical Imaging and Bioengineering), the Robert A. Welch Foundation and the National Science Foundation supported the research.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Biomarker Finder Adjusts On the Fly
Rice University scientists build better tool to find signs of disease.
Thursday, October 22, 2015
Gene On-Off Switch Works Like Backpack Strap
Texas Medical Center-based team unravels how loops form in genome.
Thursday, October 22, 2015
Researchers Find New Clue to Halting Leukemia Relapse
A protein domain once considered of little importance may be key to helping patients who are fighting acute myeloid leukemia (AML) avoid a relapse.
Friday, September 11, 2015
Cancer Treatment Models get Real
Researchers at Rice Univ. and Univ. of Texas MD Anderson Cancer Center have developed a way to mimic the conditions under which cancer tumors grow in bones.
Thursday, August 06, 2015
Bacteria Use DNA Replication to Time Key Decision
Rice University researchers have found that in spore-forming bacteria, chromosomal locations of genes can couple the DNA replication cycle to critical decisions about whether to reproduce or form spores.
Monday, July 13, 2015
Massive Genome Shift in one Generation
A team of biologists has discovered that an agricultural pest that began plaguing U.S. apple growers in the 1850s likely did so after undergoing extensive and genome-wide changes in a single generation.
Tuesday, June 16, 2015
DNA Mutations get Harder to Hide
Rice University researchers have developed a method to detect rare DNA mutations with an approach hundreds of times more powerful than current methods.
Wednesday, May 27, 2015
Researchers Tune in to Protein Pairs
Rice University team quantifies how mutations affect cell signaling in bacteria.
Tuesday, January 28, 2014
New Statistical Tools Being Developed for Mining Cancer Data
Team from Rice, BCM, UT Austin tackling big data variety.
Monday, December 02, 2013
Physicists Decode Decision Circuit of Cancer Metastasis
Rice U. research reveals three-way genetic switch for cancer metastasis.
Thursday, October 31, 2013
Multitasking Plasmonic Nanobubbles Kill some Cells, Modify Others
Rice University discovery could simplify and improve difficult processes used to treat diseases, including cancer.
Thursday, December 06, 2012
Genome of Saltwater Creature could Aid Understanding of Gene Grouping
The genetic code of a simple saltwater creature could help researchers learn more about how groups of genes function in humans and other species.
Friday, August 22, 2008
Changing Environment Organizes Genetic Structure
Study finds biological complexity arises from self-organizing structure of genes.
Monday, November 19, 2007
Scientific News
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
Gene Drive Reversibility Introduces New Layer of Biosafety
Ability to introduce or reverse the spread of genetic traits through populations could one day improve pest management and disease control.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos