Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

How Genes Tell Cellular Construction Crews, “Read Me Now!”

Published: Thursday, August 15, 2013
Last Updated: Thursday, August 15, 2013
Bookmark and Share
Stowers researchers show that DNA sequences at the beginning of genes—at least in fruit flies— contain more information than previously thought.

When egg and sperm combine, the new embryo bustles with activity. Its cells multiply so rapidly they largely ignore their DNA, other than to copy it and to read just a few essential genes. The embryonic cells mainly rely on molecular instructions placed in the egg by its mother in the form of RNA.

The cells translate these RNA molecules into proteins that manage almost everything in the first minutes or hours of the embryo's life. Then, during the so-called midblastula transition, cells start transcribing massive amounts of their own DNA. How embryonic cells prepare for this moment, and how they flag a small set of genes for transcription before that, holds important information about normal development and disease in animals and in humans.

A new study that sheds light on these questions appears in the Aug. 13 issue of eLife Sciences, authored by researchers at the Stowers Institute for Medical Research. The team, led by Associate Investigator Julia Zeitlinger, Ph.D., shows that in the fruit fly Drosophila melanogaster, genes active in the first two hours of a fertilized egg are read quickly due to special instructions at the beginning of each gene, in a region aptly named the “promoter.”

Within each promoter region, different combinations of short control elements or “boxes” form a code that instructs specialized construction crews, called RNA polymerases, where and when to start transcribing. Researchers long thought that once an RNA polymerase appears at the worksite it would quickly finish the job.

“The most important result is that promoters are different,” Zeitlinger says. “The general paradigm for a long time has been a promoter is a promoter. But really what we see is that they have different functions.”

As a postdoctoral fellow at MIT, Zeitlinger unexpectedly discovered that sometimes RNA polymerase II pauses at the beginning of a gene as if taking a lunch break. More often than not, pausing occurred at genes important for development. Zeitlinger thought pausing may help get these molecular construction workers on site before a huge work order is due.

“We were wondering whether pausing was being used for preparing global gene activation during the midblastula transition,” says Kai Chen, PhD, a former graduate student in Zeitlinger’s lab and the study’s first author.  “We expected to see widespread pausing before that transition.”

The fruit fly Drosophila melanogaster was a perfect test subject. This fly embryo takes two hours to reach the midblastula transition providing plenty of time to analyze what happens during this early period. Furthermore, decades of previous research on the flies provided context to guide the work.

Chen used a method called ChIP-seq, which can locate RNA polymerase II molecules on any gene. Paused polymerases would show up only at the beginning of genes. Working polymerases, on the other hand, would be found throughout the gene body.

The results took the Stowers team by surprise. Before the midblastula transition, RNA Polymerase II appeared to rarely pause as it transcribed roughly 100 early genes. And no construction crews were sitting idle on inactive genes in preparation for the midblastula transition. Pausing only became widespread only during the midblastula transition itself.

“What we found was not what we expected at all,” Zeitlinger says. Before the midblastula transition, instead of preparing for a huge workload the construction crews were busy completing rush jobs. “The polymerase has to come to the promoter and immediately transcribe because there's so little time to do the job. That's one way of making transcription faster. ”

When Chen and colleagues computationally compared the DNA sequences of promoters where pausing occurred with those where it didn't, a pattern emerged. They found that three different types of promoters correlated with the construction crew's pausing behavior.

The genes that RNA Polymerase II reads before the midblastula transition were often preceded by a promoter that seemed to yell, “Urgent! Don't even think about pausing.” These promoters contain what’s known as a TATA-box, named for its conserved arrangement of nucleotides, most commonly TATAA.

As cell division slows down during the midblastula transition, cells have the luxury of pausing, perhaps to fine-tune when transcription begins, Zeitlinger says.

These midblastula genes were regulated by promoters that contain a variety of specific promoter elements associated with paused RNA polymerase, including GAGA, Downstream Promoter Element (DPE), Motif Two Element (MTF) and Pause Button (PB).

The team also found a third type of promoter, which contained both the TATA-box and the pausing sequences. At these genes, RNA polymerase II does not pause initially but begins to pause during the midblastula transition.

Zeitlinger hopes learning more about promoters will give clues to the functions of unknown genes. Because these promoter sequences are not specific to flies, the differences among promoter types may be conserved in other animals as well.

“My lab is interested in understanding how development or even diseases are encoded in the genome,” Zeitlinger says. “If we understand transcription, then we can predict a lot of what genomes encode, in terms of disease or differences between individuals.”

“Promoters had been seen by some scientists as sort of boring,” she adds, “but now, they are starting to get really interesting.”

Other contributors include Jeff Johnston, Wanqing Shao, Samuel Meier and Cynthia Staber, all from the Stowers Institute.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Ancient Vertebrate Uses Familiar Tools
Sea lamprey studies show remarkably conserved gene expression patterns in jawless versus jawed vertebrates.
Monday, September 15, 2014
Repressing the Repressors May Drive Tissue-Specific Cancers
Stowers scientists establish Drosophila and mammalian models to study mutations found in pediatric brain tumors.
Friday, August 29, 2014
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
Web App Helps Researchers Explore Cancer Genetics
Brown University computer scientists have developed a new interactive tool to help researchers and clinicians explore the genetic underpinnings of cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!