Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Propose a Molecular Explanation for Degenerative Disease

Published: Monday, August 19, 2013
Last Updated: Monday, August 19, 2013
Bookmark and Share
An international collaboration has shed new light on the origins and molecular causes of age related degenerative conditions including Motor Neurone Disease (MND).

The new perspective provided by this work may lead the way to new treatments and early diagnoses.

The article which has just been published in the leading peer reviewed, international journal Cell, offers new opportunities for early diagnosis of age related degenerative diseases before symptoms appear, including through the identification of disease causing genes. It also suggests specific strategies for developing therapies which might have both preventative and therapeutic benefits for this class of degenerative disease.

Commenting on the significance of the findings co-lead author Professor Mani Ramaswami, Professor of Neurogenetics at the School of Genetics and Microbiology, Trinity College Dublin said: “Degenerative diseases, such as MND, are a poorly understood and largely untreatable set of life limiting diseases which can leave people unable to do the everyday things that the rest of us, particularly the young, take for granted. These age-associated diseases have far-reaching socioeconomic impacts. If you can predict the disease you may be in a position to slow down its onset and progression through therapeutic interventions. With these types of diseases this is significantly more effective than trying to treat the condition once symptoms have appeared. The potential for early diagnosis and delaying the onset of motor or cognitive decline by perhaps ten years is of potentially profound importance in an ageing society.”

There are nearly 120,000 cases of MND diagnosed worldwide each year with about 300 people in Ireland living with the disease at any one time.

The research just published proposes that the normal biology of mRNA regulation in neurones, in which RNA is generally silenced and only activated in the correct place and time, makes it susceptible to both age-related decline and disturbance by genetic mutation. Altered RNA regulation (ribostasis), therefore, may be a frequent causative factor in degenerative disease.  While normal RNA regulation involves regulated and reversible assembly of RNA-protein particles, both increased cellular age and mutation push the process towards hyperassembly, which leads to altered pools of RNA or RNA regulatory proteins in neurones that contribute to their eventual death.

Co-authors of the publication, Professors Ramaswami, Taylor (St. Jude Children’s Research Hospital, Memphis) and Parker (University of Colorado)* have based their model on a synthesis of findings from their collaborations and recent work by their individual research groups.

Research on neuronal RNA regulation in Professor Ramaswami's lab is funded by Science Foundation Ireland and benefits from collaborations with the National Centre for Biological Sciences Bangalore.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Discover Genetic Basis for Memory Formation with Implications for Neurological Diseases
Two genes linked to simple memory formation also regulate appropriate nerve responses that are lacking in related disease sufferers.
Monday, December 23, 2013
Genetic Mutation Could Increase Understanding of ADHD
Absence of normal gene that expresses a protein involved in nerve cell communication results in seizures and hyperactivity.
Wednesday, November 27, 2013
International Research Project Identifies a New Genetic Mutation that Helps Explain the Development of Eczema
Scientists have identified a new genetic mutation linked to the development of a type of eczema known as atopic dermatitis (AD).
Monday, November 04, 2013
New Genetic Mutation Helps Explain Development of Eczema
Researchers found that a mutation in the gene Matt/Tmem79 led to the development of spontaneous dermatitis in mice.
Monday, November 04, 2013
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Researchers Resurrect Ancient Viruses
Researchers at Massachusetts Eye and Ear and Schepens Eye Research Institute have reconstructed an ancient virus that is highly effective at delivering gene therapies to the liver, muscle, and retina.
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!