Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Team IDs Two Pathways Through which Chromosomes are Rearranged

Published: Wednesday, September 11, 2013
Last Updated: Wednesday, September 11, 2013
Bookmark and Share
Discovery provides target to potentially halt the process, prevent cancers.

Biologists reported this week in Nature that they have identified two pathways through which chromosomes are rearranged in mammalian cells. These types of changes are associated with some cancers and inherited disorders in people.

“Our finding provides a target to prevent these rearrangements, so we could conceivably prevent cancer in some high-risk people,” said senior author Edward P. (Paul) Hasty, D.V.M., of the School of Medicine at The University of Texas Health Science Center at San Antonio. Partial funding came from the Cancer Therapy & Research Center at the UT Health Science Center San Antonio.

The two pathways rearrange chromosomes by recombining DNA repeats that are naturally found in the genome, Dr. Hasty said. DNA, the chemical substance of genes, denatures and replicates during cell division and other processes. Repeats are sequences of DNA that are duplicated.

Both pathways are important for the synthesis of DNA. “Therefore, we propose that chromosomal rearrangements occur as DNA is being synthesized,” Dr. Hasty said.

DNA repeats observed in cells affected by genetic mutations

The experiments were conducted with mouse embryonic stem cells grown in tissue culture. The team measured the incidence of DNA repeats recombining in normal cells. This is called “repeat fusion.” The scientists then looked for incidence of repeat fusion in cells affected by several genetic mutations. This analysis identified the two pathways and showed large, complicated rearrangements that involved DNA repeats on multiple chromosomes.

During cell division, DNA is coiled into pairs of threadlike structures called the chromosomes. Each human cell has 22 numbered pairs of chromosomes called autosomes. The sex chromosomes are the 23rd pair in cells and determine a person’s gender. Females have two X chromosomes, while males have an X and a Y chromosome.

“We hope the new findings will help us better understand the mechanisms that cause chromosomal instability, which causes some cancers in people,” Dr. Hasty said.

At the Health Science Center, Dr. Hasty is a professor in the Department of Molecular Medicine, has a laboratory at the UT Institute of Biotechnology, and is a faculty member of the Barshop Institute for Longevity and Aging Studies.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
First Large-Scale Proteogenomic Study of Breast Cancer
The study offers understanding of potential therapeutic targets.
Fungi – A Promising Source Of Chemical Diversity
Moulds and plants share similar ways in alkaloid biosynthesis .
Great Migration and African-American Genomic Diversity
Study examines genetic data to analyze regional differences in ancestry.
Faster, More Efficient CRISPR Editing
UC Berkeley scientists have developed a quicker and more efficient method to alter the genes of mice with CRISPR-Cas9, simplifying a procedure growing in popularity because of the ease of using the new gene-editing tool.
New Tool Could Change How Infectious Diseases Are Diagnosed
Scientists at the University of Utah School of Medicine, ARUP Laboratories, and IDbyDNA, Inc., have developed ultra-fast, meta-genomics analysis software called Taxonomer that dramatically improves the accuracy and speed of pathogen detection.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!