Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Potential New Drug Target for Cystic Fibrosis

Published: Friday, September 13, 2013
Last Updated: Friday, September 13, 2013
Bookmark and Share
Large-scale screen also identified genes not previously linked to the disease.

Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg and Regensburg University, both in Germany, and the University of Lisboa, in Portugal, have discovered a promising potential drug target for cystic fibrosis.

Their work, published online in Cell, also uncovers a large set of genes not previously linked to the disease, demonstrating how a new screening technique can help identify new drug targets.

Cystic fibrosis is a hereditary disease caused by mutations in a single gene called CFTR. These mutations cause problems in various organs, most notably making the lining of the lungs secrete unusually thick mucus.

This leads to recurrent life-threatening lung infections, which make it increasingly hard for patients to breathe. The disease is estimated to affect 1 in every 2500-6000 newborns in Europe.

In patients with cystic fibrosis, the mutations to CFTR render it unable to carry out its normal tasks. Among other things, this means CFTR loses the ability to control a protein called the epithelial sodium channel (ENaC).

Released from CFTR’s control, ENaC becomes hyperactive, cells in the lungs absorb too much sodium and - as water follows the sodium - the mucus in patients’ airways becomes thicker and the lining of the lungs becomes dehydrated.

The only drug currently available that directly counteracts a cystic fibrosis-related mutation only works on the three percent of patients that carry one specific mutation out of the almost 2000 CFTR mutations scientists have found so far.

Thus, if you were looking for a more efficient way to fight cystic fibrosis, finding a therapy that would act upon ENaC instead of trying to correct that multitude of CFTR mutations would seem like a good option.

But unfortunately, the drugs that inhibit ENaC, mostly developed to treat hypertension, don’t transfer well to cystic fibrosis, where their effects don’t last very long. So scientists at EMBL, Regensburg University and University of Lisboa set out to find alternatives.

“In our screen, we attempted to mimic a drug treatment,” says Rainer Pepperkok, whose team at EMBL developed the technique, “we’d knock down a gene and see if ENaC became inhibited.”

Starting with a list of around 7000 genes, the scientists systematically silenced each one, using a combination of genetics and automated microscopy, and analyzed how this affected ENaC.

They found over 700 genes which, when inhibited, brought down ENaC activity, including a number of genes no-one knew were involved in the process. Among their findings was a gene called DGKi.

When they tested chemicals that inhibit DGKi in lung cells from cystic fibrosis patients, the scientists discovered that it appears to be a very promising drug target.

“Inhibiting DGKi seems to reverse the effects of cystic fibrosis, but not block ENaC completely,” says Margarida Amaral from the University of Lisboa, “indeed, inhibiting DGKi reduces ENaC activity enough for cells to go back to normal, but not so much that they cause other problems, like pulmonary oedema.”

These promising results have already raised the interest of the pharmaceutical industry and led the researchers to patent DGKi as a drug target, as they are keen to explore the issue further, searching for molecules that strongly inhibit DGKi without causing side-effects.

“Our results are encouraging, but these are still early days,” says Karl Kunzelmann from Regensburg University. “We have DGKi in our cells because it is needed, so we need to be sure that these drugs are not going to cause problems in the rest of the body.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

DNA Protection, Inch by Inch
DNA within reproductive cells is protected through a clever system of find and destroy: new lifts the veil on how this is done.
Monday, July 13, 2015
Cells Keep to One Direction by Erasing the Path
Findings could have implications for cancer and metastasis.
Tuesday, October 01, 2013
Of Flies and Men
What 10 000 fruit flies have to tell us about differences between the sexes.
Monday, July 23, 2012
Blood-clotting Protein Linked to Cancer and Septicaemia
In our not-so-distant evolutionary past, stress often meant imminent danger, and the risk of blood loss, so part of our body’s stress response is to stock-pile blood-clotting factors.
Friday, February 04, 2011
Making Enough Red Blood Cells
EMBL scientists identify molecules that ensure red blood cell production
Tuesday, June 01, 2010
Movies for the Human Genome
EMBL scientists identify the genes involved in cell division in humans
Thursday, April 01, 2010
EMBL Scientists Take New Approach to Predict Gene Expression
Thanks to scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, it is now possible to accurately predict when and where different CRMs will be active. The study, published today in Nature, is a first step towards forecasting the expression of all genes in a given organism and demonstrates that the genetic regulation that is crucial for correct embryonic development is more flexible than previously thought.
Thursday, November 05, 2009
Raising the Alarm When DNA Goes Bad
EMBL scientists identify a rapid response team that monitors and quickly responds to DNA damage.
Monday, August 17, 2009
Scientific News
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
Gene Drive Reversibility Introduces New Layer of Biosafety
Ability to introduce or reverse the spread of genetic traits through populations could one day improve pest management and disease control.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos