Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Discovery about DNA Repair Could Lead to Improved Cancer Treatments

Published: Monday, September 16, 2013
Last Updated: Monday, September 16, 2013
Bookmark and Share
Medical researchers have made a basic science discovery that advances the understanding of how DNA repairs itself.

When DNA becomes too damaged it ultimately leads to cancer.

Faculty of Medicine & Dentistry researcher Mark Glover and his colleagues published their findings in the peer-reviewed journal, Structure (Cell Press), earlier this summer. For years, scientists thought two key proteins involved in DNA repair operated in exactly the same way.  Glover’s team discovered how the proteins operate and communicate is vastly different — information that could lead to improved cancer treatments.

Glover explains that a protein known as BRCA1 acts like a hallway monitor — constantly scanning DNA for damage. At the first sign of problems, this protein figures out what kind of help is needed, and “radios” in a cleanup crew of other proteins.

A second protein, known as TopBP1, ensures that DNA can copy itself when needed. When this process stalls due to DNA damage, this protein also calls in a cleanup crew. But Glover likens its method of communication to tweets, rather than radio.

“The two proteins may be related and look very similar, but their roles and the way they communicate are in fact very different, which was surprising to us,” Glover says. “Each protein plays a role in recognizing damaged regions of DNA, but the problem they each solve is different.

“The question now is how can we use this information to try to improve cancer therapies? Could we temporarily knock out cancer DNA’s ability to repair itself from radiation damage? Could we administer radiation at a point that prevents cancer DNA from copying itself? Could we inhibit the activity of proteins that are normally trying to run around and fix the damage?

“Maybe some of these ideas could ultimately translate into less radiation or chemotherapy needed for patients, if the treatment can be more targeted,” says Glover, who works in the Department of Biochemistry.

His team is continuing its research in this area, and wants to learn more about the role of the TopBP1 protein and why it favours communicating with a specific protein. They also want to conduct tests in their lab to see if the use of certain medications could alter the way these proteins work in a way that could result in new or improved cancer treatments.

Glover’s lab members make 3-D images of proteins, making it easier to understand and see how proteins work.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Engineering a Permanent Solution to Genetic Diseases
New method significantly improves the ability of scientists to target specific faulty genes and then “edit” them, replacing the damaged genetic code with healthy DNA.
Wednesday, August 12, 2015
Researchers Abuzz Over Caffeine as Cancer-Cell Killer
UAlberta research team uses caffeine and fruit flies to pinpoint genetic pathways that guide DNA repair in cancer cells.
Tuesday, April 23, 2013
Researchers Draft Recipe for Human Metabolome
Researchers at the University of Alberta have completed the first draft of the human metabolome, the chemical equivalent of the human genome.
Thursday, January 25, 2007
Researcher Unveils World's Largest Drug Database
DrugBank contains detailed chemical, pharmaceutical, medical and molecular biological information on 3000 drug targets.
Friday, January 06, 2006
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!