Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Understanding how our Genes Help us Develop

Published: Monday, September 16, 2013
Last Updated: Monday, September 16, 2013
Bookmark and Share
Humans and fruit flies have similar Hox genes, which are master regulators of embryonic development.

Hox genes are the master regulators of embryonic development for all animals, including humans, flies and worms. They decide what body parts go where. Not surprisingly, if something goes wrong with these genes, the results can be disastrous.

In Drosophila, the fruit fly, a Hox mutation can produce profound changes--an extra pair of wings, for example, or a set of legs, instead of antennae, growing from the fly's head.

"The job of the Hox genes is to tell cells early on in embryonic development what to become--whether to make an eye, an antenna or wings," says Robert Drewell, associate professor of biology at Harvey Mudd College in Claremont, Calif. "Just a single mutation in the Hox gene can produce these dramatic anomalies."

Humans have Hox genes too. For this reason, Drewell is trying to understand the molecular function of Hox genes in the fruit fly, including what happens when they work properly and what happens when they don't, in order to learn more about their behavior in humans.

Genetically, humans and fruit flies are very much alike; in fact, many known human disease genes have a recognizable match in the genetic code of the fruit fly. Thus, the information researchers gain from studying flies could provide insights into certain birth defects, such as extra ribs and extra digits, and potentially serious diseases.

"We have exactly the same genes, and use them in exactly the same way," he says. "By understanding them in Drosophila, we can understand them in humans."

Drewell is conducting his research under a National Science Foundation Faculty Early Career Development (CAREER) award, which he received in 2009. The award supports junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education, and research within the context of the mission of their organization. He is receiving about $600,000 over five years.

Hox genes have been entirely conserved throughout animal evolution, meaning "since around 530 million years ago, when many complex animal life forms appeared, they had Hox genes," Drewell says.

Fruit flies are model organisms for studying genetics since they have a short lifespan--several generations can be studied in a matter of weeks--and are small and easy to grow. More importantly, they can provide a wealth of information for computational analysis because scientists have deciphered their entire genetic blueprint.

"We live in this post-genomic era, so we can do comparisons across species to look at exactly how the regulatory regions at Hox genes are changing over time," Drewell says.

Drewell's lab uses several different approaches, applying biology, genetics and computational methods to learn more about the behavior of Hox genes.

"We make what are called 'reporter' genes," he says. "We construct these artificial genes in the lab, then reintroduce them back into Drosophila. This allows us to measure what is happening to those genes. The genes we are putting in are combinations of fragments from Hox genes--different DNA regions--and we are testing if these different regions are responsible for regulating when and where the Hox gene is turned on and off."

Through their experiments, "We can look at what genes are turned on and off, and can detect exactly which DNA elements regulate the process, and how they regulate it."

Because the fruit fly's genome is available, "we are able to do comparisons across species to look at exactly how these regulatory regions are changing over time," using computational biology methods, he says. Moreover, "through that process, we can essentially start to get a handle on the role that Hox genes play in controlling cell identify in the developing embryo. We can do this in all animals, including humans."

The educational component of his CAREER grant has allowed Drewell to incorporate new elements to the curriculum, including mathematical and computational approaches, and provides undergraduate students the opportunity to conduct research that typically would not be available to them.

"Harvey Mudd doesn't have a graduate program, so all the research, essentially, is done by undergraduates," Drewell says. "They get an opportunity to do something they might not otherwise get to do. Each student is fully encouraged to take ownership of his or her own project. In this way, this often exposes them to a research field for the very first time and establishes a great foundation for their future endeavors in research."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Blueprint for the Affordable Genome
Stampede supercomputer powers innovations in DNA sequencing technologies.
Friday, June 27, 2014
Identifying the Pathway that Leads to Cells Forming into an Individual Body
By studying how genes influence cells to migrate and mutate, scientist hopes findings will lead to improved cancer treatments.
Wednesday, December 11, 2013
Genomic and Computational Tools Provide Window to Distant Past
Researcher studies gene differences in humans and other species to better understand timeline of genetic changes.
Friday, August 09, 2013
Bacterial DNA May Integrate Into Human Genome More Readily in Tumor Tissue
Gene transfer may play role in cancer, other diseases linked with DNA damage.
Thursday, June 27, 2013
NSF Awards $14M to Advance Plant Genomic Research
Resources to be developed include genomic sequences, genetic markers, maps and expressed sequence collections.
Thursday, January 11, 2007
NSF Awards $145,924 Grant to Williams College
The project will establish a laboratory at Williams for the collection of DNA sequence and genotype data.
Monday, November 21, 2005
Scientific News
Monovar Drills Down Into Cancer Genome
Rice, MD Anderson develop program to ID mutations in single cancer cells.
Autism and Cancer Share a Remarkable Number of Risk Genes
Researchers with the UC Davis Comprehensive Cancer Center, MIND Institute identify more than 40 common genes.
Number Of Known Genetic Risk Factors For Endometrial Cancer Doubled
An international collaboration of researchers has identified five new gene regions that increase a woman’s risk of developing endometrial cancer, one of the most common cancers to affect women, taking the number of known gene regions associated with the disease to nine.
Genetic Variant May Help Explain Why Labradors Are Prone To Obesity
A genetic variation associated with obesity and appetite in Labrador retrievers – the UK and US’s favourite dog breed – has been identified by scientists at the University of Cambridge. The finding may explain why Labrador retrievers are more likely to become obese than dogs of other breeds.
How Scientists Use DNA to Track Disease Outbreaks
They’re the top questions on everyone’s mind when a new disease outbreak happens: where did the virus come from? When did this happen? How long has it been spreading in a particular country or group of people?
Genetic Risk Factors of Disparate Diseases Share Similar Biological Underpinnings
Penn Institute for Biomedical Informatics and colleagues identify "roadmap" of disease mechanisms to identify candidate drug targets.
Stem Cells Know How to Unwind
Research led by the Babraham Institute with collaborators in the UK, Canada and Japan has revealed a new understanding of how an open genome structure supports the long-term and unrestricted developmental potential in embryonic stem cells.
Childhood Asthma Research Receives $2M
Research into the impact of a child’s upbringing and social and physical environments on the development of asthma will receive $2 million to tackle the condition that affects as many as one in three Canadians.
Five New Breast Cancer Genes Found
Discovery of mutations paves the way for personalised treatment of breast cancer.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!