Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Protein Knowledge Offers Hope for Better Cancer Treatment

Published: Friday, September 20, 2013
Last Updated: Friday, September 20, 2013
Bookmark and Share
Researchers have developed a sophisticated method for identifying modified proteins that affect a cell's ability to repair DNA damage.

This offers hope for improving treatment options for hereditary breast and ovarian cancer using the latest type of treatments involving the so-called PARP inhibitors.

When the pharmaceutical industry develops new medicines – for example for cancer treatment – it is important to have detailed knowledge of the body’s molecular response to the medicine.

"With a better knowledge of the many complex processes which are activated in connection with illness and medication, the better the possibility of developing new drugs. We have now moved closer to targeting and treating certain cancers using the so-called PARP inhibitors – medical inhibitors used in the latest types of cancer treatment. Certain types of tumours rely heavily on PARP proteins in order to self-repair, and PARP inhibitors can be used specifically to kill cancer cells," says Michael Lund Nielsen, Associate Professor at The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen.

The researchers have developed an advanced method for identifying the proteins which are modified with ADP-ribosylation – a biological modification affecting a cell’s ability to repair DNA damage. The research findings have just been published in the scientific journal Molecular Cell.

The forms of cancer causing most deaths among women are lung cancer, breast cancer, colon cancer, pancreatic cancer and ovarian cancer. PARP inhibitors appear to be an effective treatment for hereditary breast and ovarian cancer, but little is known about the treatment details. Our new analysis method can help shed light on precisely how the PARP inhibitor treatment is working because it can offer us more knowledge about the biological function of PARP proteins.  In the long term, it will enable us to design better and more precise PARP inhibitors, says Michael Lund Nielsen, Associate Professor at the Novo Nordisk Foundation Center for Protein Research.

DNA repair crucial for cell health

Every day, our DNA is exposed to damage which our healthy cells are capable of repairing and thus keep healthy. But the ability of certain cancer cells to repair their own DNA damage is impaired compared to standard cells and this is exploited using PARP inhibitors which block the repair systems of cancer cells.  In principle, PARP inhibitors both damage healthy and cancer cells, but normal cells have different survival mechanisms in comparison to cancer cells. PARP inhibitors therefore appear to offer new and much improved cancer treatment options.

Treatment with PARP inhibitors

PARP treatment is a new and individualised type of cancer treatment. It is a so-called targeted treatment which exploits a weakness inherent in cancer cells. PARP inhibitors have yet to be marketed, but many companies are testing them in clinical (phase 1-3) trials. So far, the PARP inhibitors are only available for experimental purposes.

"Our analysis method makes it possible to map the movement of PARP inhibitors, opening up possibilities for the optimised treatment of breast and ovarian cancers with fewer side effects. It is also being examined whether PARP inhibitors can be used in combination with chemotherapy and/or radiation therapy in connection with other cancers. In particular, radiation therapy produces many unpleasant side effects, but there are indications that optimised treatment could be achieved by combining radiation therapy with PARP inhibitors, as PARP inhibitors make cancer cells more susceptible to radiation therapy," says Michael Lund Nielsen.

Using radiation and chemical compounds, the researchers started by damaging the DNA in cells. They then isolated proteins modified with the ADP-ribosylation and identified them using mass spectrometry, a technique making it possible to determine a protein’s identity and the sites where the ADP-ribosylation chemical changes occur.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

World’s Tiniest Drug Cabinets could be Attached to Cancerous Cells for Long Term Treatment
Reservoirs of pharmaceuticals could be manufactured to bind specifically to infected tissue such as cancer cells for slow, concentrated delivery of drug treatments.
Wednesday, January 15, 2014
Genetic Aberration Paves the Way for New Treatment of Cancer Disease
Research was recently published in Scandinavian Journal of Gastroenterology.
Friday, November 08, 2013
Discovering the Secrets of Tumour Growth
Scientists have identified a compound that blocks the expression of a protein without which certain tumours cannot grow.
Monday, January 28, 2013
Waking the Dead - Scientists Reconstruct the Nuclear Genome of an Extinct Human Being
The discovery improves our understanding of heredity and the disease risk passed down from our ancestors, Copenhagen scientists say.
Monday, February 15, 2010
Isolation of a new Gene Family Essential for Early Development
Researchers have identified a new gene family essential for embryonic development that may contribute to the understanding of the development of cancer.
Thursday, August 23, 2007
University of Copenhagen Wins Novo Nordisk Grant to Build Proteomics Center
The University of Copenhagen in Denmark plans to use a KRO 600 million grant from the Novo Nordisk Foundation to build a protein research center.
Monday, May 07, 2007
Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos