Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

‘X-Shape’ Not True Picture of Chromosome Structure, New Imaging Technique Reveals

Published: Friday, September 27, 2013
Last Updated: Friday, September 27, 2013
Bookmark and Share
First 3D pictures of chromosome structure revealed.

A new method for visualising chromosomes is painting a truer picture of their shape, which is rarely like the X-shaped blob of DNA most of us are familiar with.

Scientists at the BBSRC-funded Babraham Institute, working with the University of Cambridge and the Weizmann Institute, have produced beautiful 3D models that more accurately show their complex shape and the way DNA within them folds up.

The X-shape, often used to describe chromosomes, is only a snapshot of their complexity.

Dr Peter Fraser of The Babraham Institute explains: "The image of a chromosome, an X-shaped blob of DNA, is familiar to many but this microscopic portrait of a chromosome actually shows a structure that occurs only transiently in cells – at a point when they are just about to divide."

"The vast majority of cells in an organism have finished dividing and their chromosomes don't look anything like the X-shape. Chromosomes in these cells exist in a very different form and so far it has been impossible to create accurate pictures of their structure."

Peter's team has developed a new method to visualise their shape. It involves creating thousands of molecular measurements of chromosomes in single cells, using the latest DNA sequencing technology. By combining these tiny measurements, using powerful computers, they have created a three-dimensional portrait of chromosomes for the first time. This new technology has been made possible thanks to funding from the Biotechnology and Biological Sciences Research Council (BBSRC), Medical Research Council (MRC) and the Wellcome Trust.

Dr Fraser added: "These unique images not only show us the structure of the chromosome, but also the path of the DNA in it, allowing us to map specific genes and other important features. Using these 3D models, we have begun to unravel the basic principles of chromosome structure and its role in how our genome functions."

This latest research, published in Nature, puts DNA into its proper context in a cell, conveying the beauty and complexity of the mammalian genome in a far more effective way than volumes of text previously have. In doing so it shows that the structure of these chromosomes, and the way the DNA within them folds up, are intimately linked to when and how much genes are expressed, which has direct consequences for health, ageing and disease.

Douglas Kell, BBSRC Chief Executive, said: "Until now, our understanding of chromosome structure has been limited to rather fuzzy pictures, alongside diagrams of the all too familiar X-shape seen before cell division. These truer pictures help us to understand more about what chromosomes look like in the majority of cells in our bodies. The intricate folds help to unravel how chromosomes interact and how genome functions are controlled."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Expanding the DNA Alphabet: 'Extra' DNA Base Found to be Stable in Mammals
A rare DNA base, previously thought to be a temporary modification, has been shown to be stable in mammalian DNA, suggesting that it plays a key role in cellular function.
Thursday, June 25, 2015
Researchers Use ‘Big Data’ Approach to Map the Relationships Between Human and Animal Diseases
EID2 database used to prevent and tackle disease outbreaks around the globe.
Thursday, July 17, 2014
TGAC at the Forefront of Next Generation Sequencing Capability
The Genome Analysis Centre adds two Illumina HiSeq 2500 machines to its platform suite.
Thursday, June 26, 2014
£12M for Synthetic Biology Facilities and Training
The UK Research Councils, led by the BBSRC, will award £10M to establish five centres for DNA synthesis across the UK to further develop the UK's research base in synthetic biology.
Monday, April 07, 2014
Scientists identify ‘long distance scanner’ for DNA damage
BBSRC-funded scientists at the University of Bristol have discovered that a mechanism for preventing mutation within important genes involves long distance scanning of DNA by a molecular motor protein.
Wednesday, February 26, 2014
UK Establishes Three New Synthetic Biology Research Centres
Bristol, Nottingham and a Cambridge/Norwich partnership will be UK centres for synthetic biology.
Friday, January 31, 2014
New Chromosome Map Points the Way Through Campylobacter’s Genetic Controls
The Institute of Food Research has produced a new map of the Campylobacter genome, showing the points where all of this pathogenic bacteria's genes are turned on.
Wednesday, November 13, 2013
BBSRC Invests £10 M in Synthetic Biology
The investment has been allocated to the fund by the BBSRC in response to the 2012 Synthetic Biology Roadmap, which sets out plans to harness opportunities in this area.
Thursday, November 07, 2013
A Community Based Approach for Tackling the Post-Genomic Data Deluge
Correspondence highlights the benefits of a community approach to gathering data that can help improve our understanding of the functions of genes.
Monday, October 14, 2013
Moving Genes have Scientists Seeing Spots
An international team of scientists has perfected a way of watching genes move within a living plant cell.
Wednesday, September 11, 2013
Advance in Understanding Genome Reproduction
Researchers have provided new insight into how chromosome integrity is threatened each time a cell grows and divides, helping to underpin our knowledge of healthy aging.
Thursday, August 01, 2013
£60,000 Competition to Recognise Innovative Scientists Launched by BBSRC
Innovator of the Year 2014 competition launched by BBSRC to recognise and reward scientist's whose excellent science and innovations are delivering real world impact.
Friday, July 12, 2013
Babraham Scientists Establish Cancer-Focussed Collaboration with AstraZeneca
Partnership aims to advance cancer research and develop and evaluate new therapeutic strategies to tackle prostate and pancreatic cancers.
Wednesday, July 10, 2013
Pig Disease that Costs Millions Targeted by Genetic Study
A fast mutating virus that affects pig herds and costs pork producers millions of pounds each year is being targeted by scientists.
Thursday, April 11, 2013
Scientists Identify Brain’s ‘Molecular Memory Switch’
Common fruit fly key to discovery as to how memories are written into brain cells.
Wednesday, April 03, 2013
Scientific News
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!